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AFIT/GAP/ENP/96D-8 

Abstract 

The Combined Release and Radiation Effects Satellite (CRRES) was launched on 

25 July 1990 to collect measurements in the earth's radiation belts. One instrument, the 

High Energy Electron Fluxmeter (HEEF), measured the flux of electrons in 10 channels 

with energies between 1 MeV and 10 MeV. The channel sensitivities, ^(E), have been 

calibrated and partially re-calibrated. We explore the errors introduced in unfolding the 

electron flux spectrum from the channel measurements and the propagation and growth of 

calibration and measurement errors. Using numerical experimentation, we fold the 

responses with known spectra to obtain simulated measurements, add random 

measurement and calibration errors, and unfold the spectra as 10-bin histograms which are 

compared with histograms of the original spectra. We observe that the shape (of the 

response functions) is the major factor in the growth of error in unfolding and in 

determining which type of error dominates the unfolding process. We conclude that 

successful unfolding of the electron flux is critically dependent upon the shape of the 

response functions. The re-calibration of the HEEF must be accurately completed if 

reliable unfolds of the high energy electron flux are to be obtained. 

VUl 



UNFOLDING THE HIGH ENERGY ELECTRON FLUX 

FROM CRRES FLUXMETER MEASUREMENTS 

I. Introduction 

In 1958 James Van Allen discovered zones of trapped ions and electrons encircling 

the planet. The particles which comprise these radiation belts find their origins both in the 

solar wind which blows past the planet and in the earth's lower atmosphere. Once these 

particles are injected into the region of space found between one and ten earth radii out 

from the planet, they are trapped by the earth's magnetic field. This dynamic system of 

charged particles is one of the fundamental regions in the near-earth space environment, 

and within this region operate many Department of Defense (DOD) assets. This is an 

environment where critical parameters must be accurately measured, basic comprehensive 

theories developed, and detailed computer generated models produced in order to allow 

the maximum utilization of DOD space assets. Unfolding the high energy electron flux 

from the available data base is one of the many steps required to cultivate an 

understanding of this region of space. 

Background 

The Combined Release and Radiation Effects Satellite (CRRES) was launched on 

an Atlas-Centaur booster on 25 July 1990, and was the first major scientific mission to the 

Earth's outer radiation belts since NASA's Small Scientific Satellite was launched two 

decades earlier [14]. CRRES was placed into a highly elliptical orbit with a perigee of 



350 km (1.056 earth radii) and an apogee of 33,584 km (6.331 earth radii). This allowed 

the satellite to collect data from large portions of the earth's ionosphere and 

magnetosphere. The mission had a specified duration of one year, but the goal was three 

years. CRRES collected data until 9 October 1991, when catastrophic electronic failure 

terminated the mission [7]. 

The satellite was designed to conduct three classes of experiments in the near-earth 

space environment. The first class initiated active chemical releases in the ionosphere and 

magnetosphere. The second set investigated the natural radiation environment found in 

the inner and outer radiation belts. The final set of experiments studied irregularities in the 

low altitude ionosphere [1]. 

One of the instruments carried by the CRRES for the investigation of the natural 

radiation environment was a High Energy Electron Fluxmeter (HEEF) designed to 

measure the flux of electrons with energies between 1 MeV and 10 MeV. These high 

energy electrons primarily inhabit the earth's radiation belts [8]. Measuring their energy 

distribution requires that the fluxes be unfolded from the signals generated by the 

instrument using the response functions derived from the fluxmeter's calibration. This is a 

complex process with several components. The characteristics of the measured fluxes will 

depend on the energies of the electrons which the instrument measures, the response of 

the instrument to the various electron energies, the errors introduced by the ill-conditioned 

nature of the unfolding computations, the errors in the calibration process, and the errors 

in the signal measurements [11]. 

This thesis studies the unfolding of these high energy electron fluxes, incorporating 

all of the above listed aspects. The goal of the research was to determine how all of these 



parameters impact the unfolding process. This leads to a qualitative comprehension of the 

HEEF measurements. Without this detailed understanding it is extremely difficult to 

accurately describe the flux of high energy electrons in the earth's radiation belts. 

SHUTTLE 
OUTER RADIATION BELT 

HIGH ENERGY ELECTRONS 
(I TO lOMeV) 

DEFENSE SATELLITE 
COMMUNICATION  SYSTEM 

§TEARTH RADII 

INNER RADIATION BELT 
HIGH ENERGY PROTONS 

(I TO 100 MeV) 

Figure 1. Location of Various Department of Defense Space Assets [9] 

Motivation for the Research 

The region of space near the earth is neither empty nor benign, so it is important to 

develop an understanding of the dynamic nature of this operational arena. Assets critical 

to national security operate within the radiation belts; figure 1 shows where some of these 

systems are located. An excellent way to develop a working knowledge of this 

environment is to utilize computer models. These tools can analyze current conditions in 

the magnetosphere (this capability presently exists) and predict the future state of the 



magnetosphere (this capability is expected to occur by the year 2000). The motivation for 

this thesis grows from the desire to understand the interplay of the various components 

impacting the ability to make a measurement from a remote sensing platform located in 

space. The critical first step to modeling is ensuring the accuracy of the data used to 

initialize the model. In other words, to comprehend a dynamic system one must first be 

able to measure the elements found within that system. An integral component of this 

process is the ability to unfold energy fluxes from a given set of instrument signals and 

response functions. If the measurements are not sound, the model output will be suspect 

and the near-earth environment will not be accurately depicted. Sound measurements 

presume sound calibration and data reduction methodology. 

A key input to interpreting the HEEF measurements (by unfolding the observed 

electron spectrum) is the sensitivity of the instrument channels to electrons, as a function 

of their energies. This sensitivity function is called (in the unfolding community and in this 

thesis) a response function. The response function for each measurement channel is itself 

measured when the instrument is calibrated. The HEEF was first calibrated before it was 

flown. Later, when the HEEF measurements were analyzed, this calibration was called 

into question. A second calibration (over part of the energy range of the HEEF) was 

performed on the backup instrument. The second set of response functions differed 

substantially from the sensitivities reported by the contractor after the first calibration. 

Statement of the Problem 

The research for this thesis initiated with the development of a working knowledge 

of the theory of numerical unfolding. Once a conceptual understanding was obtained, it 



could be applied to the HEEF carried on the CRRES. This, in turn, necessitates a detailed 

understanding of the design of the instrument. In particular, the instrument's sensitivities 

to electrons of various energy must be modeled analytically by a set of response functions 

obtained through a calibration. A comprehension of the morphology of the radiation belts 

completes the foundation of the knowledge required for the research. 

To examine the impact of different parameters on numerical unfolding, one needs a 

tool which allows experimentation based on a well-founded methodology. The tool for 

this thesis is a computer, with the specific device being a program written in the language 

Fortran 90 and run on the Microsoft Fortran Power Station (v4.0) compiler. Hence, a 

large amount of the research effort was expended on producing a sound algorithm with 

which to study the impacts of all the various parameters involved with unfolding the high 

energy electron flux from the HEEF measurements. The capabilities of the code are 

closely linked with the methodology of the experiment. 

A basic understanding of the research problem in conjunction with the proper tool 

allows a thorough experimental procedure to be followed. This provides a wealth of data 

for use in the analysis of the performance of the HEEF, and so output generation 

constitutes another step in the process. By considering the impact of different types of 

fluxes, different types of response functions, and different types of error, one can provide 

answers to a series of questions. First, can an idealized set of response functions be used 

to approximate unfolding with the first calibration of the instrument? Second, can an 

idealized set of response functions be used to approximate unfolding with the second 

calibration of the instrument? Third, can the first calibration be used as an approximation 

to the second calibration of the fluxmeter? Fourth, what magnitude of error is introduced 



by the unfolding technique used in the research. Finally, what is the magnitude of the 

error in the unfolded fluxes that is introduced from errors in the instrument calibration and 

errors in the signal measurements? 

Laying a proper foundation of theoretical and instrumental knowledge in 

conjunction with the proper tool scales the scope of the research and produces a data set 

which aids in the characterization of this instrument. The various components of research 

undertaken during the course of this thesis were always measured against the primary 

goal, and that was analyzing the adequacy of the calibrations and the significance of the 

differences between them. The real performance of the HEEF can not be known until a 

definitive calibration has been done and is then evaluated in terms of its impact on 

uncertainties in unfolding spectra. 

Scope of the Problem. 

The research develops a basic understanding of unfolding theory and applies it to 

known flux measurements similar in nature to those made by the HEEF carried on the 

CRRES mission. An unfolding technique is tested with both idealized response functions 

and response functions generated from the calibrations of the instrument. This will 

quantify errors introduced by the unfolding technique. Uncertainty in the response 

functions and in the instrument measurements are incorporated into the analysis of the 

response functions. This determines which source of error will dominate the unfolding 

process, and it develops a confidence level for unfolded fluxes generated from the actual 

instrument calibrations. The culmination of the thesis will be the comparisons made 



between the two sets of calibrated response functions and their respective effects on the 

measurement of the high energy electron flux spectrum. 

Research Objectives 

The Air Force must understand the environment within which its space assets 

operate. Computer modeling is an excellent method of obtaining this comprehension. If 

models are to produce accurate output, the initial data set must contain as little error as 

possible. One requires a solid understanding of exactly what is being measured. The 

goals for this thesis center on the process of making these measurements and closely 

parallel the development of the experimental methodology. 

The first objective of the research was developing an algorithm which incorporated 

pertinent aspects of unfolding theory and applying it towards producing unfolded fluxes 

similar to those believed to have been observed by the HEEF. This code, this first 

objective, would be the centerpiece of the research from which all the other objectives 

would be obtained. This algorithm would grow into the diagnostics package used to 

produce all of the results of the thesis. It is hoped this same package can be given to the 

sponsor at Phillips Laboratory and used for further diagnostic analysis. The second 

objective was to determine if a technique more robust than a trivial unfold was required 

for calculating unfolded fluxes. The third objective studied the differences between the 

two sets of response functions for the HEEF. The final objective quantified the impact of 

the various sources of error inherent to the unfolding process. The goal for this research 

was to characterize the performance of the HEEF response functions and to evaluate all of 



the key parameters which impact the unfolding problem. The objectives of the thesis all 

build upon the same foundation, and they all contribute to this one goal. 

Overview of the Thesis 

Chapter two explains the theory of numerical unfolding and how it is utilized by 

the Fortran 90 code. Chapter three details the characteristics of the fluxmeter. This 

includes explanations of the two calibrations performed on the instrument. Chapter four 

describes the methodology used to produce the test cases examined in the data and 

analysis section of the thesis. Chapter five lists and explains the test cases generated by 

the code. This includes the differences between idealized and actual instrument response 

functions and the impact of the different types of error on the unfolding technique. The 

last chapter states the conclusions reached during the research period. 



II. The Theory of Unfolding 

The process of unfolding can be very complex, and the form of the unfolding 

algorithm depends heavily upon the application to which it is applied. Unfolding 

schemes range from those which are rather unsophisticated (such as the technique 

employed in this research) to those which are very intricate (but generally require a priori 

information about the spectrum which is to be unfolded). This discussion of the theory 

starts with a quote which defines unfolding without using mathematical terminology: 

"The process of unfolding consists of finding, through some scheme or 
another, an unfolded spectrum which is physically reasonable and which 
produces unfolded signals which agree with the measurements to a degree 
justified by their accuracy. Errors arise in this process from three sources: 
measurement error in the detector, calibration error in the instrument, and 
the uncertainty which results from the ill-posed nature of the problem. [12]" 

The goal of this chapter is to develop a set of mathematical relations which provide an in- 

depth description of the above shown quote. These relations, in turn, must be used to 

unfold fluxes from a given set of signals and response functions. This chapter also 

explains the inversion technique used by the Fortran 90 code to implement the unfolding 

scheme. 

The process of unfolding is ill-posed because a continuous energy flux is 

represented by a limited number of data points, and in the case of this specific problem 

only ten points are available for constructing a flux. This limitation on the amount of 

available data can be the most severe constraint placed upon the unfolding problem. The 

process is also ill-posed because wide bin energy boundaries, dictated by the response 

functions, are introduced into the unfold. Unfortunately, ill-conditioning is also a 



concern. Any physically realistic instrument will have response functions which overlap 

in their respective energy ranges, and this means any calibration or measurement error 

introduced into the unfold may be greatly amplified [10]. There are cases in the research 

which clearly show the extent of this amplification. Even though the definition of 

unfolding is straightforward, producing unfolded fluxes which contain any degree of 

accuracy can be extremely difficult. 

Theoretical Relationships 

The cornerstone of the research methodology is a thought experiment, and the 

flow of this process is based on the theoretical relations showing the calculation of the 

instrument signals and the unfolded fluxes. The development shown below is based on a 

review of the literature [10],[11], [12], and [15]. 

The process begins by selecting a known exact flux, <p (E), in conjunction with 

a set of response functions, R?(E), generated from a calibration which contains no error. 

These inputs are used to construct a set of exact instrument signals, yt , in accordance 

with the following relationship: 

yfrnfisFW-^EydE (2-1) 

where i indexes the HEEF channels. The relation shown above is valid if the fluxmeter 

supplies a continuous set of measurements. Since no instrument provides a set of infinite 

signals, a discrete approximation for a continuous flux must be developed. In this 

10 



research the continuous flux is approximated by a set of histograms which are defined in 

the following relation: 

^(E^Yfik'ZkW^m* (2-2) 

where 

Zk(E) = 

0 E < Ek_x 

1 Ek_x<E<Ekor. (2-3) 

0           Ek<E 

and k indexes the wide bins into which the flux is unfolded. The goal is to find expansion 

coefficients, q>k, such that q>{E) closely approximates the exact flux, (p (E). 

Note that the basis functions, Xk{E)> for the approximation in equation (2-2) are 

orthogonal, because 

j™Zj(E)-Zk{EydE = öjk-AEk, (2-4) 

where Sjk is the Kronecker delta, and AEk = Ek- Ek_x. (The set of energies, 

{E0, Eu..., El0} partitions the energy range of interest into 10 wide bins.) Thus, the best 

approximation can be obtained by determining the expansion coefficients as follows. 

Multiply equation (2-2), withy replacing k as the dummy index of summation, by Zk{E) 

and integrate, to obtain: 

\lxk{Ey(pE{E).dE = foxk{E)^j-Zj{E)-dE. (2-5) 
j 

Using the orthogonality of the basis functions, this simplifies to 

11 



£zM-I,*-ZjW-Il*j-£zj{E>Zk(EydE (2-6) 

= Z h' <*;* ■AE
k = pk-AEk (2"7) 

Thus, the best coefficients are 

where we denote this choice of expansion coefficients as <pE, the exart coefficients. This 

last result also shows how to interpret these coefficients: cpf is the average of the exact 

flux, as averaged over the £* wide bin. With this choice of coefficients, we have the 

discretized exact flux, 

££(£)-I>f •**(£)• (2-9) 
k 

Now our objective in unfolding is to try to approximate the exact coefficients 

using the measurement data to construct unfolded coefficients, (puk . In actual practice, we 

wouldn't know (pE(E), but we would have the measurements, yf4. We could unfold 

those data to find the values, q>uk , but we couldn't know how well the unfolded flux 

approximates the (unknown) exact flux. So for our simulation tests, we start with a 

postulated q>E{E) , construct exact signals, optionally simulate measurement and/or 

calibration error, unfold to get the coefficients qfy, and compare them to q>k to see how 

well the unfold worked. Thus, the first step (after choosing (pE{E)) is to numerically 

12 



approximate the integrals in equation (2-1) by composite midpoint numerical quadrature: 

J V V       ^       J 

where A£, = E: - Ej_x are small enough increments of energy that the sum 

approximates the integral with negligible error. (We refer to these increments as the 

narrow bins.) 

Once a set of instrument signals has been calculated, random noise can be added 

to simulate error in the measurements. This is shown in the following relationship: 

yi
M = yf+öyfOUNT. (2-11) 

It is important to note that random noise does not have to be added to the calculation, the 

measured signals (denoted by M) can be set equal to the exact signals and used for the 

unfolding process. Calibration error in the fluxmeter's response functions (or instrument 

sensitivity) can also be simulated in the numerical experiments: 

B£{E) = Rl(E) + SR£AL{E) . (2-12) 

Once again, random noise does not have to be included. The calibrated response 

functions (denoted by Q can be set equal to the exact response functions. 

Now we need equations to solve for the unfolded flux coefficients, cpk . 

Substitute the unfolded flux, in the form 

<pU{E) = YJ<pUk-Xk{E), (2-13) 

13 



into equation (2-1), in the place of (pE(E); substitute the calibrated response functions, 

Rf (E), for the exact response functions; and substitute the (simulated) measurements, 

M )>i   , for the exact measurements. This yields 

*"=fX(*)-Itf ■**(*)•<&. (2-14) 

which can be rearranged as 

y? = llj™ *?(£)■ zk(E)-dE rf (2-15) 

Since we know Rf(E) and Zk{E) > we can approximate the response matrix elements, 

>C Rfk, using numerical quadrature (narrow bins): 

K& = \y?(E)-Xk(E)-dE 

j 

c EJ-1+EJ 
■Zk 

(Ej-i + Ej 

(2-16) 

■A£,.   (2-17) 

Thus, we have the linear system of equations, 

M     V J>C   JJ (2-18) 

u to solve for the unfolded (wide bin average) fluxes, cpk . This can be written in matrix 

notation as 

Rc-^u = yM. (2-19) 

If we choose to use more wide bins than there are instrument channels (measurements), 

then the system is underdetermined: the solution is not unique and a priori information is 

14 



needed to select a solution from among the possible ones. In the case of the HEEF 

measurements, the only a priori information is that the fluxes should be nonnegative [12]. 

If we choose to use fewer wide bins than measurements, the system is over- 

determined: there is (typically) no solution, but a least squares approximate solution is 

uniquely determined. This provides some data averaging, but also a loss of resolution. 

With only 10 measurements, we choose to use 10 bins in the unfold, so the linear system 

should have a unique solution. 

Once the unfolded flux is calculated, a comparison can be made with the exact 

wide bin average fluxes, <p\. Incorporation of calibration error, counting error, 

discretization error, and error inherent to the unfolding process provides a set of detailed 

comparisons between the unfolded fluxes and the exact wide bin average fluxes. This set 

of calculations is the foundation for the characterization of the High Energy Electron 

Fluxmeter. It is worthwhile to list the four relations showing the various types of error: 

- counting error: 

yti = yf+*?0UNT, (2-20) 

- error in the calibration: 

Rc
k{E) = Ri{E) + ÖRck

AL{E), (2-21) 

- the resulting error in the unfolded (bin average) fluxes: 

mU     ,„£ ,   c_ UNFOLD n 79\ 
<Pk = <Pk + d(Pk • KA-2.2.) 

- and discretization error: 

7pE(E) = <pE{E) + S(p{E)DISCRETIZATI0N . (2-23) 

15 



While it may be possible to reduce the discretization error by choosing basis 

functions that better approximate the variation of the exact flux within the bins, this 

requires either a priori information or an iterative unfold (or both) [11,12]. Doing so has 

a more serious drawback: the expansion coefficients become hard to interpret. We chose 

to use the basis functions, Zk(E)» so tnat <Pk is tne ** bin average of the exact flux. 

Any other choice destroys this interpretation. The discretization error is unfortunate, but 

the best way to reduce it is to use a higher-resolution fluxmeter. 

This development is incorporated into an experimental methodology that begins 

with generating scenarios that use idealized unfolds. This step demonstrates the poor 

results gathered from approximating the calibrated instrument responses with an idealized 

response. No error from the signal measurements or from the calibration is incorporated 

into these first calculations. The next step produces scenarios which show the differences 

between the two calibrations of the instrument. This displays the importance of the shape 

of the fluxmeter's response functions, for one calibration cannot be used as an 

approximation for the other. No error from the signal measurements or from the 

calibration is incorporated into this set of calculations. In the last step, calibration error 

and counting error are simulated. This shows the impact of the various types of error on 

the calculated fluxes and provides evidence of the need for a definitive recalibration of 

the HEEF. 

16 



Iterative Solutions for Linear Systems 

The tool used to conduct the research for this thesis is a code that collects inputs 

from the user, produces a set of signals and responses, and solves equation (2-18) with an 

iterative technique. There are a variety of methods which could be used to solve the 

linear system, equation (2-19). The matrices and vectors involved with this application 

are not large, so the individual calculations do not necessitate major investments of 

computing time. As a result, efficiency was not a pressing requirement for selection of an 

iterative technique. Instead, stability of performance and ease of coding drove the 

selection process. The algorithm used by the Fortran 90 code is Jacobi iteration. 

The Jacobi method iterates to solve a linear system of the form 

Ax = B. (2-24) 

Decompose A into the sum of diagonal, D, lower triangular, L, and upper triangular, U, 

matrices:  A = D + (L + U). Thus, 

D-x = b-(L + U)x. (2-25) 

The diagonal matrix, D, is trivially inverted, to get the fixed point relation, 

x = D_1b-D"1(L + U)x, (2-26) 

which is iterated, in the form 

x'+1=Tx'+c, (2-27) 

where 

T = -D_1(L + U) (2-28) 

and 

17 



c = D-1b, (2-29) 

until converged. In this application, Ajk = Rjk, xk = <pk , and bj = yj   [2]. 

The Jacobi method requires an initial estimate of the flux, <pmitial, the subroutine 

uses D"1 • yM. Iterations continue until the difference between the successive values of 

the unfolded flux are less than a relative tolerance of lxl 0~8. When this tolerance 

condition is reached, the subroutine passes the vector of unfolded flux coefficients back 

to the main program. 

18 



III. The High Energy Electron Fluxmeter 

The High Energy Electron Fluxmeter (HEEF) was one of more than forty 

instruments carried by CRRES to study the earth's inner and outer radiation belts. It was 

designed to measure the flux of electrons with energies between 1 MeV and 10 MeV. In 

addition, the instrument had to be insensitive to protons with energies of up to several 

hundred MeV. The HEEF, which carries the alpha-numeric designator AFGL 701-4, 

collected a vital set of data, for these high energy electrons deposit a major portion of the 

radiation dose received by micro-electronic components found on satellites that operate 

within the radiation belts [1]. This data set was to be utilized in the construction of 

models that would predict various parameters in the belt region. Correctly unfolding the 

electron flux from this instrument's measurements is crucial to this modeling effort [9]. 

General Characteristics of the Instrument 

The HEEF was built for the US Air Force by Panametrics under contract number 

F19628-87-C-0169. It detected electrons by using four active elements housed within the 

instrument casing. A cross-sectional view of the fluxmeter is shown in figure 2. The 

HEEF is shielded by tungsten collimators, so the electrons which are actually detected 

travel down the bore of the instrument as the satellite moves through space. Covering 

this bore opening is a 0.006" beryllium foil which prevents low energy electrons and 

protons from being detected. (The energy cutoff is 0.14 MeV for electrons and 1.3 MeV 

for protons.) Of the four active elements, two are solid state silicon surface barrier 

detectors (SSD's) which have a thickness of 700 ju m. These detectors are thin enough to 
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allow passage of 1 MeV electrons, but not so thin as to allow 10 MeV electrons to pass 

through the scintillator without depositing all of their energy. The third active element is 

the bismuth germanate (BGO) scintillator where the high energy electrons are actually 

Beryllium Foil f ■'.•.'■'■•.'■'■■.'■'■■'''•'.'■'■.''■'.] 

Front Solid 
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Figure 2. A cross-sectional view of the High Energy Electron Fluxmeter [4]. 

counted. The shape of the energy pulse recorded by the two SSDs and the BGO 

scintillator allow discrimination between electrons and protons and also between the 

various electron energies. The fourth and final active element is a plastic scintillator anti- 

coincidence shield. This anti-coincidence shield, in conjunction with the collimators, 

serves to limit the error introduced by counting off-axis electrons. The instrument 
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housing is made from magnesium so that bremstrahlung radiation will be minimized. In 

addition to studying the design of the HEEF, it is important to have a basic understanding 

of the radiation belts, and so it is necessary to discuss the environment within which this 

instrument operates. 

The Radiation Belt Environment 

High energy electrons are found in the earth's inner and outer radiation belts. 

This places the particles one to six earth radii above the surface of the planet. Figure 3 

shows the omni-directional flux of electrons in the near earth environment [8]. Because 

these electrons are found in the magnetosphere (and not the ionosphere, where collisions 

between particles cannot be neglected), their dynamics can be characterized by three 

magnetic adiabatic invariants. To define an invariant, consider the motion of a particle 

described by a pair of variables (/>,-,#,•) that are generalized momenta and coordinates. 

For each coordinate qt that is periodic, the action integral Jt is defined as 

Ji'jPfdqt (3-1) 

If the above relation is integrated over a complete period of qt, with specified initial 

conditions, it is considered an invariant. This action integral remains invariant even if a 

property of the system changes, but this change must be slow (an adiabatic change) as 

compared to relevant periods of the system. In addition, the change in the system cannot 

be related to the period. If the electron is in an initial state of motion and then undergoes 

an adiabatic change in some system property, it will be in a new state of motion. The 

final state of motion is such that the value of its action integral will be the same as the 
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action integral corresponding to the initial state of motion. The magnetic adiabatic 

invariants for the magnetosphere are associated with the gyration motion around a given 

set of magnetic field lines, the longitudinal motion parallel to the magnetic field lines, 

and the drift motion perpendicular to the field lines [13]. 

The first magnetic invariant is based on the cyclotron motion of the electron, and 

its mathematical representation is 

B-^- =0, (3-2) 
dt 

where B is the magnetic field intensity and /u is the magnetic moment of the electron. 

The relation shown in equation (3-2) shows the magnetic moment is independent with 

respect to time (since the earth's magnetic field strength is not 0) and is a constant for the 

guiding center of motion. Since the magnetic moment of the electron is constant, the 

total magnetic flux enclosed by the cyclotron motion of the electron must also be 

constant. Note, however, that the perturbation time of the earth's magnetic field must be 

significantly longer than the cyclotron period. 

The second magnetic invariant is based on the longitudinal motion parallel to the 

magnetic field lines, and its mathematical representation starts with the definition of the 

appropriate action integral: 

J = jm-vpar-ds, (3-3) 

where m is the mass of the electron, vpar is the component of velocity parallel to the 

earth's magnetic field lines, and ds is the differential path length. The invariant is 
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— = 0, (3-4) 
dt 

This implies the electron will move (parallel to the earth's magnetic field lines) in such a 

way as to preserve the total length of the particle trajectory. This invariant holds if the 

perturbation time scale is longer than the time it takes the electron to travel between the 

mirror points found near each magnetic pole. 

The third magnetic invariant is based on the drift motion perpendicular to the field 

lines, and the action integral is defined as 

J = jm-Wper-dj, (3-5) 

where Wper is the drift velocity perpendicular to the earth's magnetic field lines and <f> is 

the azimuthal angle. As in the case for the second invariant, the definition for the third 

invariant is 

^ = 0. (3-6) 
dt 

The guiding center drift motion conserves the total magnetic flux within its drift path. 

This invariant is conserved as long as the perturbation time scale is longer than the drift 

period of the electron. 

These invariants provide a general description of electron motion within the inner 

and outer radiation belts. By considering this theoretical basis one gains insight into the 

types of fluxes which may be measured in this region of space. Texts which describe the 

magnetosphere often assume these electron distributions are Maxwellian [8], [13], and 
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this provides one functional form for fluxes used in the numerical experimentation. The 

propagation and growth of signal and calibration errors with this spectrum should also be 

studied. It is important to note that the flux based on theory cannot be taken as infallible. 

Figure 3. The omni-directional flux of electrons within the earth's radiation belts [8]. 

If it is assumed to be correct, there would be no point in making measurements in the first 

place. The data collected by CRRES, and other platforms like it, must validate the 

theory. 
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The First Calibration of the Instrument 

The calibration of the HEEF is very important to the unfolding process, for it is 

this procedure which determines the sensitivity of the instrument. The value of each 

channel response will impact the number and energy of electrons in the unfolded flux. 

Perhaps more importantly, the shape of the response function will impact the growth and 

propagation of counting and calibration errors. If the instrument is not properly 

calibrated, it will be extremely difficult to produce an accurate unfolded flux. 

The fluxmeter's first calibration was conducted at two different locations. The 

calibration over the energy range from 0.75 MeV to 1.75 MeV was performed at the 

Goddard Space Flight Center's Van de Graaff accelerator in July of 1987. The 

calibration covering the range of energies from 1.3 MeV to 10.8 MeV was done at the 

Rome Air Development Center's Linear Accelerator (no date given). These two 

calibration tests were used to derive the instrument's first set of response functions [3]. 

The calibration experiment is explained in brief so the reader will have a basic 

understanding of the technique. The two different tests produced values which were used 

to construct a geometric factor, defined as 

G(E) = 2n ■ f&max A{E, 9) ■ sin(0) • dB (3-7) 

where A(E, 6) is the effective detector area as a function of energy (E) and angle of 

incidence of the electrons (6 ) and 0max is the largest angle for which A(E,0) is non- 

vanishing. The calibration of the instrument produced values used to construct analytical 

expressions for the geometric factor. The contractor's report [3] gave the following 

expressions for the geometric factor: 
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G(E) = 

exp(-5.829• E2 + 21.452• E-14.985)    1.00 < E < 1.75 MeV 

exp(-0.378• E2 + 2.553• E +1.373)       1.75 < E < 2.8 MeV ,    (3-8) 

700-1- 
1.75 

£-0.2, 

A.2 
E>2.8MeV 

where E is the energy of the electron. During the course of the research it was 

determined that the expression shown in equation (3-8), when plotted, contained a serious 

discontinuity. The response functions used in the Fortran 90 code (based upon the first 

calibration) incorporate a geometric factor given by 

G(E) = 

exp(-5.829• E2 + 21.452• E-14.985)    1.00 < E < 1.75 MeV 

exp(-0.378 • E2 + 2.553• E +1.373)       1.75 < E < 2.8 MeV ,   (3-9) 

700-1- 
1.69 

£ + 0.2. 

vl.2 

E>2.%MeV 

which eliminated the discontinuity. 

In addition to the geometric factor, a relative response factor was measured during 

the calibration of the HEEF. The relative response is the probability that an electron with 

energy E will be counted in channel i. For channels 1 through 6, the analytical expression 

for this probability is: 

R?l(E)=R™aK-exp 

while for channels 7 through 10, it is 

-(E-E?kf/(2*2) (3-10) 
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«TW- 

R^-exp 

ST*-exp 

-(£-(^-M,.))/(2,?) 
nmax 

E<Efk-bEt 

Efk -AEi<E <Efk + AEt. (3-11) 

E>Ej}k+AEi 

The values for the variables in the above expressions (in addition to other key parameters 

for the first calibration) are found in Table 1 [3]. 

Table 1. Values of key parameters for the first calibration of the fluxmeter. 

Instrument 
Channel 

i Bin Boundary 
Energy Value 

[MeV] 

Bin Energy 
Width 
Value 
[MeV] 

Energy at the 
Peak Bin 
Response, 

Efk [MeV] 

Value of the Peak Bin 

Response, ^max 

[cm2 -sr] 

LL-L1 1 1.04 and 1.56 0.52 1.30 3.5 E-04 

L1-L2 2 1.56 and 2.09 0.53 1.82 1.1 E-03 

L2-L3 3 2.09 and 2.58 0.49 2.35 1.8E-03 

L3-L4 4 2.58 and 3.04 0.46 2.80 2.4 E-03 

L4-L5 5 3.04 and 3.56 0.52 3.30 3.2 E-03 

L5-L6 6 3.56 and 4.06 0.50 3.80 3.8 E-03 

L6-L7 7 4.06 and 5.02 0.96 4.55 4.7 E-03 

L7-L8 8 5.02 and 6.09 1.07 5.55 5.2 E-03 

L8-L9 9 6.09 and 8.07 1.98 7.08 5.6 E-03 

L9-L10 10 8.07 and 10.03 1.96 9.05 6.0 E-03 

The response function for each channel (also referred to as the absolute response) 

of the HEEF is the product of the geometric factor and the relative response: 

Rt{E) = G(E)-li?l{EyiO-5. (3-12) 

where 10~5 is a factor used to scale the values of the absolute responses to those shown in 

reference 3. The source of this scaling factor appears to be a mistake in reference 3. 
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Figure 4 shows the response functions from the first calibration as shown in the 

calibration report [3]. Figure 5 shows the response functions for the first calibration as 

calculated by the Fortran 90 code. 

The response functions calculated by the code closely match those provided by 

the first calibration. Inspection of figures 4 and 5 shows that, with the exception of the 

first three energy channels, little overlap of the successive channel responses is present. 

This decoupling of the instrument responses makes the unfolding process well 

conditioned. Unfortunately, the fluxes obtained from initial electron counts made by the 

HEEF cast doubt on this first calibration [4]. 

Table 1, con't. Values of key parameters for the first calibration of the fluxmeter. 

Instrument 
Channel 

i nmax a [MeV] A£;- 

LL-L1 1 0.919 0.234 
L1-L2 2 0.914 0.234 
L2-L3 3 0.925 0.234 
L3-L4 4 0.896 0.221 
L4-L5 5 0.886 0.234 
L5-L6 6 0.905 0.221 
L6-L7 7 0.997 0.293 0.15 
L7-L8 8 0.997 0.340 0.15 
L8-L9 9 1.000 0.357 0.58 

L9-L10 10 1.000 0.425 0.50 
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Figure 4. The response functions for the HEEF as derived in the first calibration [3]. 
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Response Functions for the First Calibration 

0.006 

0.005 

Figure 5. Response functions for the first calibration as calculated by the code. 

The Second Calibration of the Instrument 

As the initial spectrum measurements made by the CRRES were evaluated, it was 

discovered that the fluxmeter was operating in an environment with a temperature (of the 

actual instrument) different from the expected value. In addition, the voltage powering 

the instrument suite which contained the HEEF was at a different setting than that used 

for the calibration testing. As a consequence of these discoveries, minor corrections to 

the fluxmeter's response functions were made (reference 4 which describes this minor 

adjustment does not show a plot of the altered response functions, and there are no 

analytical representations listed) in order to obtain signal counts more in line with 

expected values. In spite of this minor correction to the instrument sensitivities, the 
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electron fluxes derived from the HEEF signal measurements were still considered to be in 

error. It was decided to perform a partial recalibration of the HEEF [4]. 

The first High Energy Electron Fluxmeter had already been launched with the 

satellite, so it was not possible to re-calibrate the original instrument. What was possible 

was to conduct a recalibration on the spare HEEF designed and built for the CRRES. The 

contractor who built both fluxmeters claimed the designs were identical [6]. After 

reading the technical report which describes this recalibration, it appears that the second 

HEEF was not calibrated with the first instrument, so there is no common calibration test 

with which to compare the response functions of the two instruments. The fluxmeter 

carried on the satellite does contain an internal radioactive source with a low level of 

activity. This may be used for calibrating the instrument in space, but the bore must be 

closed to the natural radiation environment. The response functions for the two 

instruments may have been compared by using these internal sources, but this is not 

mentioned in any of the calibration reports. 

The partial recalibration testing was conducted at the Massachusetts Institute of 

Technology's (MIT) Van de Graaff accelerator (no date given). This calibration covered 

the energy range from 0.3 MeV to 2.7 MeV. The procedures for calculating the absolute 

response of the instrument appear to be the same as those used in the first calibration, but 

this is difficult to ascertain from the technical report. No plots or analytical expressions 

for the relative responses are given. It appears that the primary difference in the new 

absolute response functions result from an estimated 20 % error in the determination of 

the geometric factor used in calculating the first set of response functions. The exact type 

of error is not made clear. The reference [6] does include a plot showing the new 
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absolute response functions over the energy range from 0.3 MeV to 2.7 MeV, but no 

analytical expressions are given (which would allow the plot to be reconstructed). 

Although table interpolations could have been used in the range in which the 

recalibration was performed, some form of extrapolation to higher energies was needed. 

The intent was to develop a new set of response functions (for all the channels) that 

would characterize the shape of the low-energy channels and apply it to the higher 

channels. A convenient, piecewise-defmed, generic response function was devised. The 

low-energy segment is a Gaussian that rises up to the peak response, Rf , at Ef , where 

its slope is zero. The high energy segment is a constant, at some fraction, f{ 
M , of the 

peak sensitivity, for E > Ef1. These segments are joined by a cubic spline segment that 

matches the values and slopes (zero) of the tail segments where it joins them. 

Specifically, this assumed form is 

Ri(E) = 

exp (£/*-£) /(2o?) -Rfk        E<E? 

(l + x2-(l-y;to7)-(-3 + 2-x))-^     E<E\ 

jrtail . Rpk E>E 

tail 
i 

tail 

(3-13) 

where E is the electron energy and 

(  E-Efk   A 

-.tail      T?pk 
(3-14) 

E;     -hi    ) 

The parameters shown in equations (3-13) and (3-14) are listed in table 2. These values 

are taken from two different sources. Values that could be taken from the plot shown in 
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Table 2. Values of key parameters for the second calibration of the fluxmeter. 

Instrument 
Channel 

i 

[MeV] 

AE; 
[MeV] 

Efk 

[MeV] 

Etail 

[MeV] 
Rfk 

[cm -sr] 

ntail _  rtail    npk 

[cm -sr] 

LL-L1 1 1.15,1.51 0.36 1.35 2.02 6.0 E-04 4.8 E-04 

L1-L2 2 1.51,1.85 0.34 1.70 2.73 1.0E-03 5.2 E-04 

L2-L3 3 1.85,2.54 0.69 2.25 3.38 1.3E-03 6.5 E-04 

L3-L4 4 2.54, 3.03 0.49 2.80 4.20 2.4 E-03 1.2 E-03 

L4-L5 5 3.03,3.54 0.52 3.30 4.95 3.2E-03 1.6 E-03 

L5-L6 6 3.54,4.21 0.67 3.80 5.70 3.8 E-03 1.9 E-03 

L6-L7 7 4.21,5.15 0.95 4.55 6.83 4.7 E-03 2.4 E-03 

L7-L8 8 5.15,6.66 1.51 5.55 8.33 5.2 E-03 2.6 E-03 

L8-L9 9 6.66, 8.55 1.89 7.08 10.62 5.6 E-03 2.8 E-03 

L9-L10 10 8.55,10.05 1.48 9.05 13.58 6.0 E-03 3.0 E-03 

the technical report for the partial recalibration [6] were used, and the other values were 

taken from information provided for the first calibration. Perhaps the most important 

finding of the second calibration is the change in shape of the response function. The 

Table 2, con't. Values of key parameters for the second calibration of the fluxmeter. 

Instrument 
Channel 

i a [MeV] ftail = gUOl i Rpk 

LL-L1 1 0.234 0.36 
L1-L2 2 0.234 0.34 
L2-L3 3 0.234 0.69 
L3-L4 4 0.221 0.49 
L4-L5 5 0.234 0.52 
L5-L6 6 0.221 0.67 
L6-L7 7 0.293 0.95 
L7-L8 8 0.340 1.51 
L8-L9 9 0.357 1.89 
L9-L10 10 0.425 1.48 
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Figure 6. The new absolute response function obtained from the partial recalibration [6]. 

addition of a high energy tail seriously impacts the performance of the unfolding 

procedure and the quality of the unfolded fluxes which it produces. Figure 7, from 

reference 6, shows the absolute response functions derived from the partial recalibration 

of the HEEF. Figure 8 shows a plot of the response functions for the recalibration as 

calculated by the Fortran 90 code. 

The two sets of response functions shown in figures 5 and 8, together with the 

four idealized responses used by the code, constitute one half of the requirement for 

unfolding the electron flux. The other requirements are the signal measurements made by 
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the instrument. Characterizing the difference (in effect on the unfolded spectra) between 

these two response functions is a cornerstone of the research, and a significant portion of 

the results contained within the thesis pertain to this aspect of the problem. 

Response Functions for the Second Calibration 

0.006 

Figure 7. Possible response functions (extrapolated from the second calibration) as 
calculated by the code. 
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IV. Methodology for the Research 

This thesis answers a series of questions posed by the project's sponsor in the 

Geophysics Directorate at the USAF Phillips Laboratory at Hanscom AFB, MA. These 

concerns all center on the performance of the High Energy Electron Fluxmeter. The 

characterization of this performance depends upon quantifying the effects of the 

differences between the two sets of calibrated instrument response functions. A sound 

experimental methodology must be employed if a successful performance 

characterization is to be accomplished, and this chapter explains that methodology. 

A rational method for conducting numerical experiments produces answers to the 

questions which were posed in the first chapter. For instance, is there a need for anything 

beyond a trivial unfold? Can an idealized set of response functions be used as an 

approximation for instrument sensitivities quantified in the first and second calibrations 

of the instrument? Are the response functions from the first calibration a suitable 

substitute for the sensitivities developed from the partial recalibration? How do errors 

inherent to the unfolding technique alter the values of the unfolded electron fluxes? Is 

there a significant difference in the errors introduced through unfolding with the two 

different sets of response functions? Finally, how do the presence of errors in the 

instrument calibration and in the measured counts influence the value of the unfolded 

flux? In other words, is one type of error dominant over the others? Answers to these 

questions provide valuable input for the sponsor and his continuing efforts to refine the 

HEEF's performance [5]. The methodology for conducting this research must be 

complete, and so the experimental plan will be explained. In addition, the steps in a 
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generic numerical experiment will be detailed. This provides the reader with an 

understanding of the approach the researchers took to solve this problem. Before 

discussing the experiment plan, the methodology for conducting a numerical experiment 

is presented. 

Numerical Experiment Method 

The purpose of a single experiment is to determine how well a particular spectrum 

could be unfolded if the actual response functions had a particular form and if a (possibly 

different) set of response functions were used in unfolding. The steps used to conduct 

such an experiment are as follows. 

1.   The experiment initiates with the selection of an exact spectrum, g>E(E). The 

experimenter may choose from seven different functional forms, of which the two most 

relevant to this research are 

<pE(E) = E~P (4-1) 

where p > 0 is an input to the code, and 

<pE(E) = (1.128) It-{El r)1/2 • expf—) (4-2) 
V 7 ) 

where r, the temperature (in MeV) of the Maxwell-Boltzmann distribution, is also an 

input to the code. The actual electron spectrum present in the near-earth space 

environment is not known, but these test cases are designed as thought experiments and 

so the user can select the flux. Without knowing the exact spectrum, it would not be 
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possible to quantify the differences between the response functions and the impacts of the 

various sources of error. 

2.   The next step is to fold the exact flux with a set of response functions in 

order to calculate a set of simulated instrument signals, yf. This uses a fine mesh 

(referred to as narrow bins in the Fortran 90 code) discretization of the continuous 

functions in order to calculate the integrals with negligible quadrature error, using 

equation (2-10). Various sets of response functions are used in order to explore how the 

shape of the functions affects the accuracy of the unfolded flux. Chapter three contains 

mathematical definitions of the two sets of HEEF response functions. 

3.   At this point in the experimental process, the researcher has a set of exact 

instrument signals calculated by folding the exact flux with a set of response functions 

where it was assumed there was no error in the instrument calibration. The experimenter 

may now add simulated counting error, SyfOUNT, to the exact instrument signals or add 

calibration error, 5R^AL{E), to the response functions. The exact signals, yf, are 

positive. The standard deviation of a Poisson-distributed count, n, is cfount = v« . The 

user selects the relative uncertainty, ecount, in the counts for the channel with the 

maximum signal. (In practice, the maximum count was often -10 , so that ecount ~ 1%.) 

The response functions used here can be considered to be in arbitrary units. In any case 

the actual counts depend upon the duration of the count and the intensity of the flux. 

Therefore, the relative uncertainty entered in the code is scaled inversely with the square 
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root of the signal. (A lower signal, compared to the maximum signal, implies a smaller 

count and greater relative uncertainty.) Thus: 

e, COUNT 
( „count        > ' ^V1 

v 10° '*j 
■tf 

(v   ^ yMax (4-3) 
yt ) 

Note that ecount is entered as a percentage, whence the divisor, 100. The factor £■   is a 

random sample from a standard normal (Gaussian) distribution, i.e., with zero mean and 

unit variance. Although electron counts have Poisson statistics, the normal distribution is 

an adequate approximation, presuming each channel has about 10 or more counts. This is 

an important consideration if the Fortran code is used for numerical experiments 

involving fluxes that decrease rapidly with increasing electron energy values. 

The calibration error is modeled as 

5RfAL(E) = (eCAL ■ B*(E)) ■ tf (4-4) 

where R?{E) comprises the set of exact response functions, eCAL is an error percentage 

input by the user, and the factor $ is a random sample from a uniform distribution, with 

-1 < $ < 1. This error formulation simulates systematic error in the calibration of the 

instrument channel (with a different random error for each channel). The Fortran 90 code 

has an option which calculates an energy dependent calibration error, but that was not 

used for the numerical experiments. (It was not needed in the testing reported here, but it 

remains a part of the code.) If the researcher does not wish simulate errors, scount and/or 

eCAL can be set equal to 0. In either case (with or without error), the user now has a set of 

simulated measured signals, y,M, and a set of simulated calibrated response functions, 
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sf(E), to use for unfolding the electron flux. These two quantities are passed to a 

subroutine in the Fortran code which solves for the unfolded flux. 

4. In this step, the histogram panels, %k (E) > (referred to as wide bins within the 

computer code) are constructed as basis functions for unfolding. These histogram panels 

partition the electron energy range of interest (as implemented, 1 to 12 MeV). In 

addition, these panels approximate the shape of the response functions (or the difference 

between adjacent ones), and thus, the bin boundaries are at the lower threshold of the 

responses. The highest bin boundary is either selected to ensure complete coverage of the 

energy range of interest or it is selected based upon input from the calibration reports. 

This results in wide bin energy boundaries at E0,..., £10. The values for these bin 

boundaries are listed in the tables found in chapter three. 

5. Now the computer code unfolds the measured signals to get the expansion 

coefficients, (puk which (we hope) are good approximations to the bin-average exact 

fluxes, (pf, as discussed in chapter 2. 

6. In the last step, the performance of the unfold with respect to the selected set 

of response functions is evaluated. This is done graphically or with statistical measures 

of performance. Graphically, plots of q>E{E) and <pU(E), which are histograms, are 

overlaid with a (smooth) plot of <p (E). 

When random counting and/or calibration errors are simulated, the resulting 

unfolded flux (set of values, $) depends on the specific random numbers that are drawn 

in sampling from the appropriate distribution. To characterize the effect of these errors, 
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an ensemble of simulations, differing only in the seeding of the random number 

generator, is run. Then, we examine various statistics that are norms of the errors. We use 

the error ratio as a measure of the relative difference between a benchmark value, such as 

ZT U 
<p%, and an unfolded approximation to it, such as cpk : 

,JJ   mE 

£rei{<Pk>(Pk) = -r-{j jrr- W 

Note that, if (puk » <p\ , then s„/(p* ,pf) is approximately the conventional relative 

error (expressed as a fraction, rather than as a percentage). Where L simulations are run 

(£ = 1,..., L ), we can use an average or maximum (over I or A; or both) of the absolute 

values of the error ratios to characterize performance. As examples, consider 

I       imax       1 I 

and 

(AM , (4-7) 

Kir=^ttWi{AA)\. (4-8) 
LD< k=ie=\ 

The first norm, \srei\™g, estimates the average (to some extent, typical) error in unfolding 

the flux in bin k. The second norm, |ffre/|J
iax, measures the worst-case error (among the 

bins) observed in the £th simulation. The third norm, \£rei\mg, estimates the overall 

average error in unfolding with a particular set of response functions, Rt (E), and with a 

specified level of random counting and/or calibration errors. 
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The Experiment Plan 

This research is intended to demonstrate the need for unfolding and the need for 

an accurate, full-range recalibration of the HEEF. The plan is to conduct a series of 

numerical experiments which characterize the performance of the fluxmeter and how that 

performance depends upon the shape of the actual spectrum and the shape of the response 

functions. These numerical experiments utilize both idealized sets of response functions 

(described below), and the response functions from the first calibration or as extrapolated 

from the second, partial recalibration (as described in chapter 3). The research will 

explore the implications of the suspected shape of these new response functions. 

The performance of these different response functions used to calculate the 

various unfolded fluxes can be compared and contrasted.   In addition, the four types of 

error present in this process can be incorporated into this comparison. From this series of 

experimental case studies, conclusions can be drawn about the importance of finishing 

the second calibration and about the necessity of using a formal unfolding technique to 

calculate the unfolded electron fluxes. 

There are four sets of numerical experiments; one set to answer each of the 

following questions: 

1. Can an idealized set of response functions (described below) be used to 
approximate the set of response functions from the first calibration report? 

2. Can an idealized set of response functions be used to approximate the set of 
response functions extrapolated from the second calibration report? 

3. Can the first set of calibrated response functions be used as an approximation for 
the second set of response functions? 
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4. How do the presence of errors inherent to the unfolding technique, errors resulting 
from the discretization of the flux, errors in calibration, and errors in measurement 
alter the values of the unfolded electron fluxes? 

Details of these tests are presented in the next chapter, but first, we define the 

idealized response functions. 

An idealized response function, RJ{E) is just 

R!(E) = K£iXi(E). (4-9) 

This models the channel response as having constant sensitivity (at the average calibrated 

value) within the intended range of the channel, and no sensitivity outside that range. 

(This would be an ideal instrument channel.) This is equivalent to using a response matrix 

in which RJk = Rfk8ik. Then, the unfold reduces to solving an uncoupled set of equations: 

yf - S *W - 2 Ärf" - *W. (4-10) 

and hence 

where (p™ are the expansion coefficients for the trivial unfold spectrum: 

JV(E) = TtrfUZt(E). (4-12) 
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V. Numerical Experimentation: Results and Observations 

The numerical experiments contained within this chapter are divided into four 

different groups, where each group of experiments answers a specific goal listed in the 

statement of the problem found in chapter one. The first group explores the accuracy of 

unfolded fluxes when an idealized set of response functions is used as an approximation 

to the instrument sensitivities as detailed in the first calibration of the instrument. The 

second group is similar to the first, only the set of idealized sensitivities is used to 

approximate the set of response functions extrapolated from the partial recalibration of 

the instrument. The third set of numerical tests explores the implications of 

approximating the extrapolated response functions with the response functions derived 

from the first calibration of the HEEF. The last group quantifies the impact of the 

different sources of error inherent to measuring the electron flux. This includes error in 

the unfolding technique, error in the counts made by the HEEF, and error in the 

calibration of the instrument. In addition to the four groups of experiments, this chapter 

expands upon certain elements of the research as they pertain to the sets of various 

response functions. In particular, the motivation for using each set of response functions 

is discussed. 

Each test group for the numerical experiments will contain the following 

information: 

1. the sets of response functions used for folding and unfolding, 
2. the rationale for using these sensitivities, 
3. the known flux, 
4. the calibration and counting error added to the process, if any, 
5. a plot showing the continuous flux, the discretized flux, and the unfolded flux, 
6. the error norms, and 
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7.   a discussion of any observations and inferences. 

This explanation for each specific experiment should provide the reader with a clear 

understanding of both the experimental technique and the results. 

The Three Sets of Response Functions 

It is possible to perform experiments with a wide variety of response functions, 

but only three sets are used in this research. These sets correspond to unfolding with an 

idealized sensitivity, unfolding with the sensitivities expressed in the first calibration of 

the fluxmeter, and unfolding with the sensitivities extrapolated from the partial 

recalibration of the HEEF. As one experiments with the numerical unfolding procedure it 

becomes very clear that these three sets of response functions cannot be used as 

approximations for each other. Unfolding with the correct instrument sensitivity is 

critical for calculating accurate electron fluxes. 

The first set of sensitivities is the set of idealized response functions. These are 

the response functions one would use for doing a trivial unfold. The response matrix, 

Rfk, has only diagonal elements; all other entries are zero. Each diagonal element (for 

purposes of this research) has the same value as the corresponding diagonal element in 

the response matrix for the first calibration and the energy values for the wide bin 

boundaries are also the same as for the first calibration. The mathematical relations for 

calculating this matrix are found in chapter three. In essence, the idealized sensitivity 

could be used to approximate the set of response functions obtained from the first 

calibration (which has a diagonally dominant response matrix), but whether or not this 

approximation is valid remains to be seen. These idealized response functions are shown 
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The Idealized Response Functions 
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Figure 8. The set of idealized response functions. 

in figure 8. Idealized response functions based on the second calibration are used to 

provide its trivial unfold. 

The second set of response functions used in the experimentation are the 

sensitivities quantified in the first calibration of the fluxmeter. Chapter three explains the 

calculation of this response, and it includes analytical expressions for the geometric 

factor, the relative response, and the absolute response. The third set of response 

functions are the sensitivities extrapolated from the partial recalibration. Once again, 

chapter three details the development and lists the set of mathematical expressions used 

to calculate the sensitivities. Although the figures showing the specific responses for the 

two calibrations are not included here, there is a different way to view this. Each 
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Discretization of the Idealized Response Functions 
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Figure 9. The discretization of the idealized response functions. 

Discretization of the First Calibration 
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Figure 10. The discretization of the response functions for the first calibration. 
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response matrix for each set of response functions represents a discretization of the 

sensitivity, and this can be shown in three dimensional plots of Rik. Recall that i is the 

instrument channel and k is the wide bin. Figures 9,10, and 11 show the progression 

from a diagonal matrix (idealized responses) to a diagonally dominant matrix (first 

calibration) to a nearly upper-triangular matrix (the partial recalibration). 

Discretization of the Second Calibration 

Wide Bin 
1     1      2 

Channel 

Figure 11. The discretization of the response functions for the second calibration. 

The three dimensional plots of the response matrices capture the essence of this 

unfolding problem, for the most important result of the research is that the shape of the 

response function plays a dominant role in the unfolding technique. Accurate 

determination of the shape of the response functions is essential for successful unfolding. 
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This is why the partial recalibration of the HEEF must be completed, and the numerical 

experimentation will justify this conclusion. 

Approximating the First Calibration with a Set of Idealized Response Functions 

This experimental group has only two test cases. It shows that using the idealized 

set of response functions as an approximation for the response functions derived from the 

first calibration of the instrument introduces an unacceptably large amount of error into 

the unfolded flux (as compared with the discretized flux). The unfolded electron fluxes 

shown here simulate the results one would obtain by attempting a trivial unfold (by using 

a direct inversion of the idealized response matrix). 

Test Case 1: 

The set of response functions used for folding is the set from the first calibration. 

The set of response functions used for unfolding is the set of idealized sensitivities. This 

simulates using a trivial unfold to approximate unfolding with responses obtained from 

the first calibration of the instrument. The exact flux is 

<pE{E) = E~P (5-1) 

where p is 4 and E is the energy of the electron. There is no counting or calibration error 

incorporated into this unfold. Figure 12 shows the continuous flux, the discretized flux, 

and the unfolded flux. 

The histogram plot shows large differences between the discretized flux and the 

unfolded flux. Note how the continuous flux does not pass through several of the 

unfolded flux bin values. The extent of the error is difficult to measure on the 
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logarithmic scale, but the maximum error in the ten wide bins is 213 % (the ratio of the 

difference between the unfolded and discretized flux to the discretized flux) and the 

average error is approximately 107 %. These error ranges are unacceptably large, and so 

using the idealized response functions as an approximation for the response functions 

derived from the first calibration (for this type of known flux) is ill-advised. 

Test Case 1 
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Figure 12. The flux values for test case 1. 

Test Case 2: 

The set of response functions used for folding is the set from the first calibration. 

The set of response functions used for unfolding is the set of idealized sensitivities. This 
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simulates using a trivial unfold to approximate unfolding with responses obtained from 

the first calibration of the instrument. This time, however, the exact flux is 

<pE{E) = 
'1.128' E_ vl/2 

•exp (5-2) 

where r is the temperature (in MeV) and E is the energy of the electron. The peak in this 

Maxwell-Boltzmann distribution is at 0.5 MeV; the temperature is r = 1 MeV. There is 

no counting or calibration error incorporated into this unfold. Figure 13 shows the 

continuous flux, the discretized flux, and the unfolded flux. 
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Figure 13. The flux values for test case 2. 
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Once again, the histogram plot shows large differences between the discretized 

flux and the unfolded flux. The maximum error in the ten wide bins is 206% and the 

average error is approximately 116 %. The results are not strongly dependent on the 

functional form of the flux, so using the idealized response functions as an approximation 

for the response functions derived from the first calibration is not recommended. 

Approximating the Second Calibration with a Set of Idealized Response Functions 

This experimental group only requires two test cases. It shows that using the 

idealized set of response functions as an approximation for the response functions derived 

from the partial recalibration of the instrument introduces an unacceptably large amount 

of error into the unfolded flux (as compared with the discretized flux). The unfolded 

electron fluxes shown here simulate the results one would obtain by attempting a trivial 

unfold (by using a direct inversion of the diagonalized response matrix) with a response 

matrix that is nearly upper triangular. 

Test Case 3: 

The set of response functions used for folding is the set from the partial 

recalibration. The set of response functions used for unfolding is the set of idealized 

sensitivities. This simulates using a trivial unfold to approximate unfolding with 

responses obtained from the second calibration of the instrument. The exact flux is 

<pE(E) = E-P (5-3) 
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where p is 4 and E is the energy of the electron. There is no counting or calibration error 

incorporated into this unfold. Figure 14 shows the continuous flux, the discretized flux, 

and the unfolded flux. 

If the shape of the response functions hinted at in the recalibration is correct, an 

idealized set of response functions (a diagonal response matrix) cannot be used for 

unfolding the flux. The maximum error in the ten wide bins is 777 % and the average 

error is approximately 291 %. Obviously, the off-diagonal elements of the response 

matrix cannot be ignored. This test case shows the importance of completing the partial 

recalibration of the HEEF. The shape of the response functions must be accurately 

determined. 

Test Case 3 

100000 

x 
3 

U. 

10000 

1000 

100 

 Discretized Flux 

- - Unfolded Flux 

- ■ Exact Flux 

S 

10 

1 

\ 

■^ 

-=?- 

0.5        1.5       2.5       3.5       4.5       5.5       6.5       7.5       8.5       9.5       10.5 
Energy (MeV) 

Figure 14. The flux values for test case 3. 
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Test Case 4: 

The set of response functions used for folding is the set from the second 

calibration. The set of response functions used for unfolding is the set of idealized 

sensitivities. This simulates using a trivial unfold to approximate unfolding with 

responses obtained from the partial recalibration of the instrument. This time, however, 

the exact flux is 

<pE(E) = 
1.128 rE_ A/2 

•exp (5-4) 
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Figure 15. The flux values for test case 4. 
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where x is the temperature (in MeV) and E is the energy of the electron. The peak in this 

Maxwell-Boltzmann distribution is at 0.5 MeV; the temperature is x = 1 MeV. There is 

no counting or calibration error incorporated into this unfold. Figure 15 shows the 

continuous flux, the discretized flux, and the unfolded flux. 

This test case is included to show that the results in test case 3 are not unique to 

the functional form of the flux. The maximum error in the ten wide bins is 1903 % and 

the average error is approximately 436 %. The idealized response functions simply 

cannot be used as an approximation for the instrument sensitivities extrapolated from the 

second calibration. 

Approximating the Second Calibration with the First Calibration 

This experimental group, like the first two, only requires two test cases. It shows 

that using the first calibrated set of response functions as an approximation for the 

response functions extrapolated from the partial recalibration of the instrument introduces 

large amounts of error into the unfolded flux (as compared with the discretized flux). 

These numerical experiments show that there are important differences in the shapes of 

the two sets of HEEF response functions. In essence, a diagonally dominant response 

matrix cannot be substituted for one that is nearly upper triangular. If the second 

calibration of the instrument is accurate, than the unfolding computations must be 

performed with response functions which accurately reflect the second set of instrument 

sensitivities. 
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Test Case 5: 

The set of response functions used for folding is the set from the partial 

recalibration. The set of response functions used for unfolding is the set from the first 

Test Case 5 
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Figure 16. The flux values for test case 5. 

calibration of the instrument. This simulates using the first set to approximate unfolding 

with responses obtained from the second set. The exact flux is 

<pE{E) = ETp (5-5) 

where p is 4 and £ is the energy of the electron. There is no counting or calibration error 
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incorporated into this unfold. Figure 16 shows the continuous flux, the discretized flux, 

and the unfolded flux. 

The motivation for test cases 5 and 6 is proving the need for a complete recalibration 

of the fluxmeter. As is readily apparent, the two response matrices cannot be 

interchanged. The maximum error in the ten wide bins is 190 % and the average error is 

approximately 82 %. The shape of the response functions is critical, and a large high 

energy tail in the sensitivity cannot be ignored, even though the spectrum decreases 

rapidly with increasing energy. 

Test Case 6: 

The set of response functions used for folding is the set from the second 

calibration. The set of response functions used for unfolding is the set from the first 

calibration of the HEEF. This simulates using the first set to approximate unfolding with 

responses obtained from the second set. This time, however, the exact flux is 

1.128 (E\V1       f-E 

T    ) \rj V r 
^(£)=— • -      -exp— (5-6) 

where r is the temperature (in MeV) and E is the energy of the electron. The peak in this 

Maxwell-Boltzmann distribution is at 0.5 MeV; the temperature is r = 1 MeV . There is 

no counting or calibration error incorporated into this unfold. Figure 17 shows the 

continuous flux, the discretized flux, and the unfolded flux. 

Test case 6 demonstrates that the results in test case 5 are not a function of the 

flux. The maximum error in the ten wide bins is 562 % and the average error is 

approximately 125 %. 
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Test Case 6 
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Figure 17. The flux values for test case 6. 

Incorporating the Various Types of Error into the Unfolding Calculations 

This experimental group contains eight test cases. These eight scenarios show the 

impact of discretization error, error inherent to the unfolding technique, calibration error, 

and counting error. From these experiments one can explore how coupled and de- 

coupled instrument sensitivities perform under the influence of different types of error. 

When will this error propagate and grow? In addition, these numerical experiments show 

which type of error dominates the unfolding calculations. 
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Test Case 7: 

The set of response functions used for both folding and unfolding is the set from 

the first calibration. This experiment explores the error introduced through the 

discretization of the flux and through the ill-conditioned nature of the unfolding problem. 

The exact flux is 

<pE(E) = E-P (5-7) 

where p is 4 and E is the energy of the electron. There is no counting or calibration error 

incorporated into this unfold. Figure 18 shows the continuous flux, the discretized flux, 

and the unfolded flux. 

Test Case 7 
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Figure 18. The flux values for test case 7. 
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Test cases 7 and 8 are designed to show how coupling in the responses between 

successive instrument channels can alter the accuracy of the unfolded fluxes. In test case 

7, which uses the response functions from the first calibration, there is very little coupling 

between successive channels. The maximum error in the ten unfolded flux bins is 23.1 

%. This error occurs in the first channel. Refer to figure 5 in chapter three which shows 

the response functions for the first calibration (as calculated by the code) and note the 

extent of the overlap of instrument responses between channels one and two. The second 

largest error is 10.4 %, and this is found in the second channel. The average error in the 

wide bins is 6.8 % (4.3 % without the first two channels). This experiment shows that 

coupling can introduce error into the unfold; the error in channels one and two compared 

to the errors in the other eight channels (not as strongly coupled as the first two) 

demonstrate this nicely. 

Test case 8: 

The set of response functions used for both folding and unfolding is the set from 

the partial recalibration. This experiment explores the error introduced through the 

discretization of the flux and through the ill-conditioned nature of the unfolding problem. 

The exact flux is 

<pE(E) = E~p (5-8) 

where p is 4 and E is the energy of the electron. There is no counting or calibration error 

incorporated into this unfold. Figure 19 shows the continuous flux, the discretized flux, 

and the unfolded flux. 
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As in the experiment for test case 7, the concern in this example is coupling in the 

response functions between successive instrument channels. If one compares the 

response functions (as calculated by the code) for the first calibration and the partial 

recalibration (shown in figure 7 in chapter three), it appears the responses in the second 

calibration are more strongly coupled. The maximum error in this test case is 13.9 %, 
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Figure 19. The flux values for test case 8. 

and the average error is 4.4 %. At first, this result seems contradictory. Both the 

maximum error and the average error in test case 8 are less than test case 7. Note, 

however, that the coupling in the first two channels in the first calibration is very strong. 

This is where the largest errors occur. If these two channels are removed from the 
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average error calculation, the average error in the unfolded flux produced by the second 

set of response functions is slightly larger. Another point worth mentioning is the values 

assigned to the tails in the second set of response functions. This information was 

extrapolated from the figure in reference 5 which showed the absolute responses derived 

from the partial recalibration. If the value of the absolute responses for these tails are 

different from what the researchers extrapolated (specifically, if that value is greater), the 

degree of coupling will be significantly enhanced. This is one of the reasons why 

finishing the second calibration of the HEEF is so important. 

Test Case 9: 

The set of response functions used for both folding and unfolding is the set from 

the first calibration. Calibration errors of 5% (by which we mean eCAL = 5%) and 1% 

counting errors (by which we mean scount = 1%) are simulated in this unfolding 

calculation. This experiment explores the impact counting and calibration error have on 

fluxes unfolded by response functions which exhibit a small degree of coupling between 

successive instrument channels. The exact flux is 

cpE(E) = E-p (5-9) 

where/» is 4 and E is the energy of the electron. Figure 20 shows the continuous flux, the 

discretized flux, and the unfolded flux. 

For this type of unfold, the maximum error in the wide bins is approximately 20 

% and the average error is approximately 6 %. This is not significantly different than the 

error results stated in test case seven. If one wide bin has a large error in the unfolded 
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flux (resulting from calibration or counting error), this error cannot grow and propagate 

through other channels because the instrument channels are de-coupled. As an end result, 
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Figure 20. The flux values for test case 9. 

the errors in test cases seven and nine are approximately the same. Note that a 5 % error 

in the calibration and an 1 % counting error in the signal counts represents a best case 

scenario: the calibration was correctly performed and the instrument was operating 

properly. Remember that the signal counts have already been taken, and an 1 % error in 

the channel with the maximum counts as a best case was an input from the sponsor of the 

research [4]. 
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Test Case 10: 

The set of response functions used for both folding and unfolding is the set from 

the partial recalibration. There is a calibration error of 5 % and a counting error of 1 % 

incorporated into this unfolding calculation. This experiment explores the impact 

counting 

and calibration error have on fluxes unfolded by response functions which exhibit a larger 

degree of coupling between successive instrument channels. The exact flux is 

<pE(E) = E-p (5-10) 

where/» is 4 and E is the energy of the electron. Figure 21 shows the continuous flux, the 

discretized flux, and the unfolded flux. 
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Figure 21. The flux values for test case 10. 
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The value for the average wide bin unfolded flux error is approximately 7 %, with a 

maximum error in the wide bins of approximately 20 %. Although subtle, this test case 

shows an interesting result. When no calibration error or counting error was incorporated 

into the unfold, one could argue that the second set of response functions actually 

performed better than the set from the first calibration. Once calibration and counting 

error enter into the scenario, the performance changes. With error values representative 

of a best case calibration and instrument performance, the maximum errors are about the 

same but the average error resulting from use of the second set of response functions is 

larger. The presence of the high energy tails in the partial recalibration are beginning to 

be felt. 

There are two points which deserve further development. First, the performance 

of these sets of response functions depends on the functional form of the electron flux. 

With the Fortran 90 code, it is possible to generate hundreds of test cases but this does 

not necessarily mean every possible test case should be included. To keep the analysis 

manageable, the test cases incorporating error analysis from the unfolding technique, the 

instrument calibration, and the measured signals only use one type of flux. The spectrum 

shown in equations (5-7) through (5-14) was selected based on input from the sponsor at 

Phillips Laboratory. It is the flux which, at the present time, best models the measured 

electron spectra in the radiation belts [5]. 

The second point concerns the generation of random noise for the different test 

cases. This random noise depends, in part, on seeds input by the person using the 

Fortran 90 code. One test case cannot constitute a conclusive data set, and so ten test 

cases are calculated for each test case which uses calibration and counting error. The data 
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in the ten test cases are used to calculate the error ratios shown in figures 22, 23, 26, 27, 

30, and 31. These figures show the average absolute value of error ratio and the 

maximum absolute value of error ratio by trial spectra and by energy bin for test cases 10, 

12, and 14. Once again, to keep the data analysis manageable, the statistical plots are 

limited to test cases incorporating signal and calibration error in conjunction with the 

second set of response functions. 

In these statistical studies of the propagation of error, we use error ratio rather 

than per cent relative error. We make this choice because error ratio treats high and low 

errors symmetrically. For example, an error by a factor of two high is a relative error of 

100%, while an error by a factor of two low is a relative error of-50%. Yet both errors 

are the same size (factor of two) on a logarithmic plot, and both are represented by the 
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same magnitude error ratio: a factor of two high/low is an error ratio of ± %. Figure 22 

shows the relative errors in per cent (high and low) corresponding to error ratios in the 

range 0 < \erel\ < 1. It may be helpful in interpreting the results reported below. 

Figure 23. A statistical error analysis, by energy bin, for test case 10. 

Figure 23 shows an average relative error in the unfolded flux, by energy bin, 

ranging from 0.03 to 0.17 (remember, these relative error numbers do not correspond to 

error percentages). Maximum relative errors in the unfolded flux, by energy bin, range 

from 0.05 to 0.28. Figure 24 shows the relative errors not by energy bin, but by 

generated test case (trial spectrum). In this example, the average relative error varies 
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from 0.05 to 0.10. The maximum relative errors have a low value of 0.10 and a high 

value of 0.28. In essence, these figures show that when no calibration or signal error are 

incorporated into the unfold, the second set of response functions performs slightly better 

than the first set. When experiments which simulate a best case scenario for calibration 

and signal error are computed, the second set of response functions now performs slightly 

worse than the first set. This is a direct result of the degree of coupling between 

successive instrument channels. The response functions from the partial recalibration 

exhibit stronger coupling, 
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Figure 24. A statistical error analysis, by trial spectra, for test case 10. 
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and so signal and calibration error can propagate and grow from the high energy channels 

to the low energy channels (because the response function tails go from low to high 

energy). Compare the magnitudes of the relative error in test cases 10,12, and 14 as the 

amount of counting and calibration error increase. 

Test Case 11: 

The set of response functions used for both folding and unfolding is the set from 

the first calibration. There is a calibration error of 20 % and a counting error of 1 % 

Test Case 11 

10000 

0.5 
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- Unfolded Flux 

- Exact Flux 

1.5       2.5       3.5 4.5        5.5        6.5 

Energy (MeV) 

7.5 10.5 

Figure 25. The flux values for test case 11. 
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incorporated into this unfolding calculation. This experiment explores the impact 

counting and calibration error have on fluxes unfolded by response functions which 

exhibit a small degree of coupling between successive instrument channels. The exact 

flux is 

<pE(E) = E-p (5-11) 

where p is 4 and E is the energy of the electron. Figure 25 shows the continuous flux, the 

discretized flux, and the unfolded flux. 

Test case 11 simulates an unfold with a best case counting error and a calibration 

error indicative of the accuracy obtained with the first calibration of the instrument. The 

maximum error in the wide bins ranges from 15 % to 20 %. This is very similar to test 

cases 7 and 9. The average error in the wide bins is approximately 9 %. Even when 

simulating a worst case scenario in the calibration, the decoupling of the response 

functions derived from the first calibration does not allow the error to grow and 

propagate. The maximum errors are the same as when no calibration or counting error 

were added to the unfolding process. The average errors have increased slightly from test 

case 7 to test case 9 to test case 11, but they are still less than ten percent. 

Test Case 12: 

The set of response functions used for both folding and unfolding is the set from 

the partial recalibration. There is a calibration error of 20 % and a counting error of 1 % 

incorporated into this unfolding calculation. This experiment explores the impact 

counting 
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and calibration error have on fluxes unfolded by response functions which exhibit a larger 

degree of coupling between successive instrument channels. The exact flux is 

cpE{E) = E-p (5-12) 

where/» is 4 and E is the energy of the electron. Figure 26 shows the continuous flux, the 

discretized flux, and the unfolded flux. 

The maximum error per wide bin in test case 12 is approximately 25 % and the 

average error per wide bin is 11 %.   Under the same conditions as those in test case 11, 

Test Case 12 
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Figure 26. The flux values for test case 12. 
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the second set of response functions is performing noticeably worse than the first set. 

The shape of the response functions is critical to the unfolding process, and the presence 

of coupling in the responses between the different instrument channels is the most 

important attribute of the functional shape. 

The relative error plot, by wide energy bin, in figure 27 shows the average relative 
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Figure 27. A statistical error analysis, by energy bin, for test case 12. 

error lies within the range of 0.07 to 0.20. The maximum relative error ranges from 0.15 

to 0.30. Figure 28 shows the relative average error, by trial spectrum, varies from 0.08 to 

0.17. The maximum relative error has a minimum value of 0.20 and a maximum value of 
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0.29. This information shows that increasing the calibration error does increase the error 

in the unfolded flux, but the increase is not excessively disproportionate. Case study 12 

shows calibration error does not dominate the process of unfolding the electron flux. 

Error Analysis for Test Case 12 

0.3 

0.25 

(0 

u 
O u 
k. 

UJ 

0.15 

0.1 

0.05 

I Average 

i Maximum 

iiIIIT rr 
III     Mil 

1 23456789 10 

Trial 

Figure 28. A statistical error analysis, by trial spectra, for test case 12. 

Test Case 13: 

The set of response functions used for both folding and unfolding is the set from the 

first calibration. There is a calibration error of 20 % and a counting error of 5 % 

incorporated into this unfolding calculation. This experiment explores the impact 

counting and calibration error have on fluxes unfolded by response functions which 
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exhibit a small degree of coupling between successive instrument channels. The exact 

flux is 

q>E(E) = E~p (5-13) 

where/? is 4 and E is the energy of the electron. Figure 29 shows the continuous flux, the 

discretized flux, and the unfolded flux. 

Test Case 13 
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Figure 29. The flux values for test case 13. 

This test case represents a worst case scenario for unfolding with HEEF 

measurements. A calibration error of 20 % simulates calibrating with an accuracy on 

order ofthat obtained in the first calibration of the instrument. An error of 5 % in the 
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Channel with the most counts is indicative of poor (but not unreasonably poor) 

performance of the fluxmeter. The maximum error in the unfolded flux bins varies from 

20 % to 25 %. The average error is approximately 10 %. Considering the large amount 

of error incorporated into this unfold, the results seem quite good, for average errors are 

still relatively small. Even the maximum errors are not that excessive. Response 

functions which have a small degree of coupling between successive energy channels 

perform well in calculating unfolded fluxes. Unfortunately, the partial recalibration 

shows this de-coupling to be unrealistically optimistic, for the responses have tails. In 

addition, test cases 5 and 6 showed that the first calibrated responses cannot be used to 

approximate the response functions extrapolated from the partial recalibration. 

Test Case 14: 

The set of response functions used for both folding and unfolding is the set from 

the partial recalibration. There is a calibration error of 20 % and a counting error of 5 % 

incorporated into this unfolding calculation. This experiment explores the impact 

counting 

and calibration error have on fluxes unfolded by response functions which exhibit a larger 

degree of coupling between successive instrument channels. The exact flux is 

<pE(E) = E~p (5-14) 

where p is 4 and E is the energy of the electron. Figure 30 shows the continuous flux, the 

discretized flux, and the unfolded flux. 

The maximum error per wide bin in test case 12 is approximately 40 % to 45 % and 

the average error per wide bin is 23 %.   Under the same conditions as those in test case 
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13, the second set of response functions is performing significantly worse than the first 

set. These two test cases provide even more evidence that the shape of the response 

functions will impact the unfolding process. The more coupled the response functions, 

the more ill-conditioned the unfold and the greater the error introduced into the unfolded 

high energy electron flux. 

Test Case 14 
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Figure 30. The flux values for test case 14. 

The relative error plot, by wide energy bin, in figure 31 shows the average relative 

error lies within the range of 0.14 to 0.44. The maximum relative error ranges from 0.22 
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to 1.22. Figure 28 shows the relative average error, by trial spectrum, varies from 0.10 to 

0.44. The maximum relative error has a minimum value of 0.18 and a maximum value of 

1.22. This information shows that error in the signal counts is the dominant error in the 

unfolding process. Coupled response functions open the door to error growth and 

propagation. Even if the unfolding process itself (without the addition of counting or 

calibration error) does not introduce a large degree of error into the unfolded flux, the 

coupling is still there. A calibration error of 20 % and a counting error of 5 % essentially 

destroy the unfold if the response functions are coupled. 
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Figure 31. A statistical error analysis, by energy bin, for test case 14. 

The test cases in this chapter were selected to demonstrate several different points. 

First, the shape of the response function is important. Idealized approximations cannot be 
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used for response functions which are strongly coupled. The unfolding process cannot be 

done in a trivial manner. Second, coupled response functions allow growth and 

propagation of error. Increasing the calibration and counting error had little impact on 

fluxes unfolded with the first set of response functions. This was not the case with the 

second set, for by increasing the error in the calibration and in the signal counts the 
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Figure 32. A statistical error analysis, by trial spectra, for test case 14. 

confidence level in the values of the unfolded flux collapsed. Third, it appears that the 

error in the signal counts has a stronger impact on the unfolded fluxes than does that of 

the calibration error. The reader must be careful in drawing this last conclusion, 
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for the impact of the signal error is dependent upon the form of the flux. If an electron 

spectrum decays rapidly with higher energies, the errors in the counts made in the higher 

energy bins will be relatively larger, as shown in table 3. Since the response functions are 

coupled from higher energies to lower energies, a large error in the counts in a high 

energy bin may propagate and grow to the lower energy bins. The important point is that 

the correct response functions must be used, they cannot be approximated with idealized 

cases. In addition, the calibration error and the counting error must be minimized, or the 

error growth and propagation will destroy the unfold. 

Relative Standard Deviation 

[%] 
Channel Normalized Signal £ count — 1 /° 

£ count —5/o 

1 1.000 1.00 5.00 
2 0.775 1.14 5.68 
3 0.618 1.27 6.36 
4 0.380 1.62 8.11 
5 0.281 1.89 9.43 
6 0.196 2.26 11.30 
7 0.144 2.63 13.16 
8 0.083 3.47 17.34 
9 0.037 5.22 26.09 
10 0.011 9.41 47.06 

Table 3. Expected Counting Errors for q>E{E) ~ E 4 with Second Calibration 

The next chapter will summarize the results shown in the test cases and will 

present general observations and conclusions. Also, recommendations for further action 

and research will be discussed. 
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VI Conclusions and Recommendations 

The research conducted for this thesis can be summarized by stating the key 

results in a table which includes observations from all 14 test cases. In addition to the 

table, observations can be organized into inferences about trends discovered during the 

research. In particular, comments on the shape of the response functions are provided. 

From this summary final conclusions will be drawn. The chapter ends with a section 

detailing recommendations for further action. 

Summary of Results 

The results obtained from the numerical experiments in chapter five are 

summarized in Table 4. The number of the test case in the table corresponds to the 

number of the test case in chapter five. The flux used for the experiment is denoted by 

<p{E) = E-* = cppl (6-1) 

or 

,  ,    .1.128^ (E\12       (-E\ 
<P(E) = \—r-\\-j   ■ QXA~T)s?•*' (6"2) 

r  J 

with T = 1. The entries in the column for the response functions are the folding response 

function set (used to produce the exact signals) followed by the unfolding response 

function set (used to obtain the unfolded fluxes). The calibration and counting errors are 

listed next, and this is self-explanatory. The column titled Max Error contains the 

maximum percentage error, by bin, between the discretized flux and the unfolded flux. 

The column titled Ave Error contains the average percentage error, by bin, between the 

80 



discretized flux and the unfolded flux. The final columns are the overall maximum and 

average absolute values of the error ratios of the unfolded fluxes for all the bins and trials, 

I       imax      j I       iavg 
\£rel\ md \£rel\      ■ 

Table 4. A Summary of the Fundamental Results. 

Test 
Case 

Flux Response 
Functions 

£CAL count Max 
Error 

Ave 
Error 

I        .max 
\£rel\ Mavg 

1 <PP: Cal 1/Ideal 0 0 213% 107%   — 

2 <Pmb 
Cal 1/Ideal 0 0 206% 116%   — 

3 <PPi Cal 2/Ideal 0 0 777% 291%   — 

4 <Pmb 
Cal 2/Ideal 0 0 1903% 436%   — 

5 Pf Cal 2/Cal 1 0 0 190% 82%   — 

6 <Pmb Cal 2/Cal 1 0 0 562% 125%   — 

7 <ppl Cal 1/Cal 1 0 0 23.1% 6.8%   — 

8 <ppl Cal 2/Cal 2 0 0 13.9% 4.4%   — 

9 <ppl Cal 1/Cal 1 5% 1% -20% -6%   — 

10 <PPI Cal 2/Cal 2 5% 1% 32% 7% 0.276 0.069 

11 «V Cal 1/Cal 1 20% 1% -20% -9% — — 

12 «V Cal 2/Cal 2 20% 1% 35% 11% 0.297 0.109 

13 <pp> Cal 1/Cal 1 20% 5% -25% -10% — — 

14 Vpl Cal 2/Cal 2 20% 5% 306% 27% 1.209 0.235 

Inferences from the Observations 

Based on the experimentation presented in chapter five and summarized in table 

3, inferences can be organized into four different categories. The first category pertains 

to approximating the set of response functions from the first calibration with an idealized 

set of response functions. Test cases 1 and 2 show this greatly and unnecessarily 

increases the errors introduced into the unfolded fluxes. The second category (test cases 

3 and 4) examines the use of a set of idealized response functions as an approximation to 
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the response functions extrapolated from the partial recalibration of the HEEF. This 

approximation introduces extremely large (and unnecessary) errors. The third category 

(test cases 5 and 6) uses the set of response functions derived from the first calibration to 

unfold data constructed using the second set of HEEF response functions. Using the 

original calibration data to unfold measurements when the measuring instrument is 

responding as we extrapolated from the partial recalibration introduces errors on the order 

of a factor of two to a factor of six, even before the introduction of counting and 

calibration error. The last category (tests 7 through 14) explores the propagation and 

growth of random calibration and counting errors. This error analysis includes both sets 

of HEEF response functions. The degree of coupling (resulting from the shape of the 

response functions) is the most important consideration for this category. In the absence 

of random errors, the second set of response functions performs better (than the first set) 

in calculating unfolded fluxes. This is a consequence of the second calibration response 

functions' smaller variation within energy bins, as compared to those of the first 

calibration. However, the strong degree of coupling in the second set has opened the 

door for more severe growth of random calibration and measurement errors as they 

propagate through the unfolding calculations. Thus, when counting and calibration error 

are added to the unfolding, the performance of the second set of response functions 

rapidly deteriorates while the performance of the first set remains fairly constant. The 

shape of the response functions is critical to the unfolding process, for it is the shape of 

the instrument sensitivities which drives the degree of coupling. In addition, for the flux 

(p{E) = E-4 (6_3) 
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the dominant source of error is the unavoidable counting errors in the low-signal 

channels. 

Conclusions 

If the response functions extrapolated from the partial recalibration of the HEEF 

represent the actual instrument sensitivities, than these response functions must be used 

for unfolding the high energy electron flux. Ignoring the need for an unfold (using a 

trivial unfold) could result in order-of-magnitude errors. (If the initial calibration were 

accurate, the errors introduced in this way would only be factor-of-two errors.) These 

response functions contain a large degree of coupling between successive instrument 

channels, and so errors from the instrument calibration and the fluxmeter signals must be 

minimized. The HEEF measurements already contain random counting errors. Perhaps 

data can be pooled to reduce them. In any event, however, calibration errors should be 

minimized. 

The extrapolated second calibration response functions postulated in this study 

should not be considered conservative. It may well be that the actual HEEF response 

functions are even more strongly coupled and have more variation within energy bins. 

Unfortunately, trivial unfolding of the measurements, based on the currently available 

calibration data can produce plausible spectra that are used, but are seriously in error. 

Such errors cannot be estimated or bounded until the real response functions are 

accurately calibrated, over the full range of the instruments' response, and with good 

resolution. It may be that, once the response functions are known as accurately as 

possible, the unfolded flux spectra will be subject to substantial and unavoidable 
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uncertainties. Is so, we need to be aware ofthat fact, so that poor results won't be given 

undue weight in space environment models. 

Recommendations 

As a result of the research done during this thesis, there are two recommendations 

to be made. First, a definitive recalibration of the HEEF must be completed before its 

measurements are trusted. Once this is accomplished, more robust unfolding techniques 

should be applied to the instrument measurements. One technique which may work well 

is a Backus-Gilbert formal regularization. An unfold based on a sound technique, in 

conjunction with a complete second calibration, will produce unfolded electron fluxes 

with a minimal amount of error, and perhaps more importantly, with knowable error 

bounds. The data gathered by CRRES are too valuable to the Department of Defense to 

lose, but the HEEF data can't be used safely without a definitive calibration and proper 

unfolding of high energy electron flux spectra. 
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Appendix A: The Fortran 90 Code 

This appendix contains the Fortran 90 code used during the research stage of the thesis. 

Each numerical experiment generates output to the screen for analysis by the researcher, and 

so it is necessary to define the values which are displayed on the computer monitor. The first 

row in the display contains five entries. Starting on the left-hand side of the screen is a list of 

the instrument channels, and these values index the rest of the data in this row. The second set 

of numbers are the exact signals which correspond to yf . The third component in this row is 

the vector of measured signals, yf. The column titled Ideal Rspns contains the diagonal 

elements of the Rfk matrix. The next column, Calib'd Rspns, lists the diagonal elements of the 

Rfk matrix. The second row begins with a listing of the wide bins. Note that the number of 

instrument channels will always equal the number of wide bins. The next column entry is the 

exact flux, cpf . The third column in the second row is the unfolded flux, <pk . The next entry, 

titled Flux %Err, is defined as 

^-r5-- (A-i) 

If Flux %Err is negative, the unfolded flux is less than the exact (known) flux. The next 

column, DSig, is the difference between yf and yf. The final column, DRes, is the 

difference between Rfk and Rfk. 

Program InstrumentUnfold 

! This program allows the user to unfold a flux from a set of instrument signals. 
! Initially, the user generates instrument signals from a known flux, and so he 
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must select which flux and which response function will produce these signals. 
The response function matrix and the flux vector are used with the MatMul 
intrinsic function to generate the instrument signals. These signals and the 
response function picked by the user for unfolding are utilized in a Jacobi 
iterative scheme to produce an unfolded flux. In addition, the user has the 
option to add three types of error to the unfolding process. The first simulates 
counting error in the signal measurements. The second type models a systematic 
error in the calibration of the instrument. The final type represents an energy 
dependent error in the instrument calibration. These instrument calibration 
errors may take either an uniform or a gaussian distribution. In addition, the 
user may generate the random error manually (by inputting the seed), or he can 
let the machine generate the errors (in this case, the random error generating 
functions are seeded by a call of the system clock). Throughout the course of 
the program run, important information is written to data files which can be 
utilized in Mathematica, v2.2 notebook shells. This tracks information like 
response functions used, types of error added to the process, and flux values 
which can be plotted via BarChart in Mathematica. 

Implicit None 

!!! REAL DECLARATIONS 

Real(8) temperature 
Real(8) ErrorPercentSignal 
Real(8) SysErrorPercentRespns 

Real(8) BinErrorPercentRespns 

Real(8) yMax 

Real(8) power 

Temperature of the Maxwellian spectrum 
Upper bound for user input signal error 
Upper bound for user input systematic 
response error 
Upper bound for user input energy dependent 
response error 
The maximum value of the array for the 
exact signals measured by the instrument 
Exponent value for the ActualFlux Function 

INTEGER DECLARATIONS !!! 

Integer, Parameter:: iMax = 10 
Integer RefmeFactor 
Integer nw 
Integer sChoice 
Integer WriteChoice 
Integer rFoldChoice 

Integer rUnfoldChoice 

Integer EbwChoice 

Number of instrument channels 
Refinement factor for the narrow bins 
Number of wide bins in the unfold 
Case statement index for spectrum choice 
Case statement index for data write choice 
Case statement index for folding 
response function 
Case statement index for unfolding 
response function 
Case statement index for the choice of the 
Ebw array 
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Integer SignalErrorChoice ! Case statement index for signal 
! error choice 

Integer Response SysErrorChoice ! Case statement index for systematic 
• response error choice 

Integer ResponseBinErrorChoice • Case statement index for energy dependent 
response error choice 

Integer ResSysErrorFormat Case statement index for systematic 
response error format 

IntegerResBinErrorFormat Case statement index for energy dependent 
response error format 

Integer jTotal Number of narrow energy bins 
Integer ij,k Counting indices 
Integer Count 1 Assignment scalar for call of 

system clock (signal) 
Integer Count2 Assignment scalar for call of 

system clock (systematic) 
Integer Count3 Assignment scalar for call of 

system clock (energy dep) 

!!! INTEGER ARRAY DECLARAT] [ONS !!! 

Integer, Dimension(l) :: Seedlnputl Array for user input random seed (signal) 
Integer, Dimension(l):: Seedlnput2 Array for user input random seed 

(systematic) 
Integer, Dimension(l):: Seedlnput3 Array for user input random seed 

(energy dependent) 
Integer, Dimension(l) :: Seedl Array for random seed (signal) 
Integer, Dimension(l) :: Seed2 Array for random seed (systematic) 
Integer, Dimension(l) :: Seed3 Array for random seed (energy dep) 
Integer, Allocatable :: jMax(:) Index of the highest energy narrow bin in 

the wide bin 
Integer, Allocatable :: nn(:) Number of narrow bins in a wide bin 

!!! REAL ARRAY DECLARATION S !!! 

Real(8), Allocatable ::R1(:) Array for random function values 
(ID, uniform) 

Real(8), Allocatable :: R1A(:) Array for random function values 
ID, uniform systematic response error) 

Real(8), Allocatable :: R2(:,:) Array for random function values 
(2D, uniform) 

Real(8), Allocatable :: R2A(:,:) Array for random function values (2D, 
uniform systematic response error) 

Real(8), Allocatable ::R3(:,:,:)                      ' Array for random function values 
(2D, uniform) 
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Real(8), Allocatable :: Gl(:) 
Real(8), Allocatable :: G1A(:) 

Real(8), Allocatable :: G2(:,:) 

Real(8), Allocatable 
Real(8), Allocatable 
Real(8), Allocatable 

Real(8), Allocatable 

Real(8), Allocatable 

Real(8), Allocatable 

RnFold(:,:) 
RnUnfold(:,:) 
RwUnfoldExact(:,:) 

RwUnfoldBinError(:,:) 

Real(8), 
Real(8), 
Real(8), 
Real(8), 
Real(8), 

Allocatable 
Allocatable 
Allocatable 
Allocatable 
Allocatable 

Real(8), Allocatable 

Real(8), Allocatable 

RwUnfoldSysError(:,: 

RwUnfoldCalib(:,:) 

nFlux(:) 
wFlux(:) 
dEn(:) 
FluxUnfolded(:) 
DeltaWideFluxC) 

FluxErrorPcnt(:) 

DeltaSig(:) 

Real(8), Allocatable :: DeltaRes(:,:) 

Real(8), 
Real(8), 
Real(8), 
Real(8), 
Real(8), 
Real(8), 
Real(8), 
Real(8), 

Allocatable 
Allocatable 
Allocatable 
Allocatable 
Allocatable 
Allocatable 
Allocatable 
Allocatable 

yExact(:) 
yMeasured(:) 
yDelta(:) 
Ebw(:) 
Ebc(:) 
dEnw(:) 
dEw(:) 
En(:) 

Gaussian random number 
Gaussian random number (scalar, gaussian, 
systematic response error) 
Array for random function values 
(ID, gaussian) 
Response functions for narrow bin folding 
Response functions for narrow bin unfolding 
Exact response functions for 
wide bin unfolding 

! Energy Dependent Error in the response for 
wide bin unfolding 

! Systematic Error in the response for wide 
bin unfolding 
Simulated calibrated response function for 
the wide bin 
Flux spectrum for the narrow bins 
Flux spectrum for the wide bins 
Width of the narrow bins 
Output for the linear solve subprogram 
Absolute value of the difference between 
the wide flux and the unfolded flux 
Percentage error based on the difference 
between the wide flux and the unfolded flux 
Array containing the absolute value of the 
the difference between exact and 
measured signal 
Array containing the abs value of the 
difference between exact and calib response 
Exact instrument signals 
Measured instrument signals 
Error in the measured instrument signal 
Energy at upper boundary of a wide bin 
Energy at the center of a wide bin 
Width of the narrow bin within a wide bin 
Width of a wide bin 
Energy of the particles 

!!! INTERFACE BLOCK !!! 

! The following section of code contains the interface block for the seven 
! flux generation functions, the six response functions, and the Jacobi 
! linear solve subroutine. 

Interface 
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Real(8) Function Maxwellian(e,tau) 
Real(8) e ! energy of particles 
Real(8) tau ! fundamental temperature 

End Function Maxwellian 

Real(8) Function ExponentialD(e) 
•   Real(8)e 

End Function ExponentialD 
energy of the particle 

Real(8) Function LinearD(e) 
Real(8) e 

End Function LinearD 
energy of the particle 

Real(8) Function ConExponD(e) 
Real(8) e 

End Function ConExponD 
energy of the particle 

Real(8) Function ConLinD(e) 
Real(8) e 

End Function ConLinD 
energy of the particle 

Real(8) Function Heaviside(e) 
Real(8) e 

End Function Heaviside 
energy of the particle 

Real(8) Function ActualFlux(e,p) 
Real(8) e 
Real(8) p 

End Function ActualFlux 

energy of the particle 
value for the exponent 

Real(8) Function ResponseA(i,e,wbeb) 
Integer i ! index counter (instrument channel) 
Real(8) e ! energy of the particle 
Real(8), Dimension(0:):: wbeb     ! wide bin energy boundary 

End Function ResponseA 

Real(8) Function ResponseB(i,e,wbeb) 
Integer i 
Real(8) e 
Real(8), Dimension(0:):: wbeb 

End Function ResponseB 

Real(8) Function ResponseC(i,e,wbeb) 
Integer i 

index counter (instrument channel) 
energy of the particle 
wide bin energy boundary 

index counter (instrument channel) 
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Real(8) e ! energy of the particle 
Real(8), Dimension(0:):: wbeb     ! wide bin energy boundary 

End Function ResponseC 

Real(8) Function ResponseD(i,e,wbeb) 
Integer i ! index counter (instrument channel) 
Real(8) e ! energy of the particle 
Real(8), Dimension(0:):: wbeb     ! wide bin energy boundary 

End Function ResponseD 

Real(8) Function HEEFresOne(i,j,e,jTotalpass) 
Integer i ! index counter (instrument channel) 
Integer j ! index counter (narrow bin channel) 
Real(8) e ! energy of the particle 
Integer jTotalpass ! total number of narrow bins 

End Function HEEFresOne 

Real(8) Function HEEFresTwo(i,e) 
Integer, Intent(IN):: i ! index counter (instrument channel) 
Real(8), Intent(IN):: e ! energy of the particle 

End Function HEEFresTwo 

Subroutine Jacobi(x,A,b) 
Real(8), Intent(Out):: x(:) ! This array is the iterated solution 

! the Jacobi subroutine returns (flux) 
Real(8), Intent(In):: A(:,:) ! The array for the response functions 
Real(8), Intent(In):: b(:) ! The array for the instrument signals 

End Subroutine 

End Interface 

!!! INTRODUCTION OF THE CODE FOR THE USER !!! 

! The block of text below provides the user with a basic description of 
! what this program does. It is shown at the beginning of each program 
! run. 

Print*, "Program InstrumentUnfold:" 
Print* 
Print*, "This program allows the user to unfold a flux from a set of instrument" 
Print*, "signals. The simulated signals are generated from a known flux where the" 
Print*, "user selects which flux and which set of response functions produce these" 
Print*, "signals. The flux and the set of response functions are used with the" 
Print*, "MATMUL intrinsic function to generate exact instrument signals. The" 
Print*, "signals and a response function picked by the user for unfolding are" 
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Print*, "utilized in a Jacobi iterative scheme to unfold the flux. The user may" 
Print*, "add three types of error to the unfolding process. The first simulates" 
Print*, "counting error in the signal measurements. The second models a systematic" 
Print*, "error in the calibration of the instrument. The final type represents an" 
Print*, "energy dependent error in the instrument response. The program output is" 
Print*, "displayed on the screen and written to data files for later use." 
Print* 

nw = iMax      ! Required for the direct inversion done by the Jacobi Subroutine 

!!! SELECTION BLOCK FOR WRITING DATA TO FILES !!! 

! The user now has the option of writing data to files for later use in the 
! Mathematica, v2.2 software. The path set up for the data save is machine 
! specific, so it is suggested that the user NOT write any data to files unless 
! this path has been altered for the specific machine. 

Print*," Many of the responses made to the series of questions which" 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Write(*,,(A)',Advance='NO') "   Choice = " 
Read(*,*)WriteChoice 
Print* 

!!! FLUX FORM CHOICE !!! 

The section of code below asks the user to input the form of the energy 
spectrum required for the folding process. There are seven different 
selections. Note that the Maxwellian form for the flux requires the 
user to input a temperature (in MeVs) for the location of the peak of the 
Maxwellian distribution function. The peak will be located at one half 
the value of the temperature. Choice seven is a form of the spectrum 
based on actual measurements made by the instrument. The information 
required to formulate this choice was obtained from the sponsor, and it 
requires input from the user in the form of a negative power with 
which to raise the energy. Components of the user input are written to 
data files for use with Mathematica. 

Print*, " Enter your selection for the functional form" 
Print*, " of the energy spectrum (must be an integer)." 
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follow can be written to files stored in the Mathematica" 
directory. These data files can then be examined at a later" 
time. Please select which option you wish to use for this" 
data run (choice must be an integer)." 

1 = Write data to files in the c:\wnmath22 directory " 
2 = Do not write any data to files " 



Print # ii 1 = Maxwellian " 
2 = Exponential Decrease   " 
3 = Linear Decrease " 
4 = Constant Followed by Exponential Decrease " 
5 = Constant Followed by Linear Decrease " 
6 = Heaviside (constant than a factor of 100 decrease)" 
7 = Particle Energy Raised to the Negative 'p'" 

Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Write(*,,(A)',Advance='NO') "   Choice = " 
Read(*,*) sChoice 
Print* 

! The code below is constructed for writing data files 

If (WriteChoice EQ. 1) Then 
Select Case (sChoice) 

Case (1) 
Open (Unit = 3, File = 'C:\wnmath22\sChoice.dat') 
Write (3,*) "The form of the spectrum for this data run is Maxwellian." 
Close (3) 

Case (2) 
Open (Unit = 3, File = 'C:\wnmath22\sChoice.dat') 
Write (3,*) "The form of the spectrum for this data run& 

is an exponential decrease." 
Close (3) 

Case (3) 
Open (Unit = 3, File = 'C:\wnmath22\sChoice.dat') 
Write (3,*) "The form of the spectrum for this data run& 

is a linear decrease." 
Close (3) 

Case (4) 
Open (Unit = 3, File = 'C:\wnmath22\sChoice.dat') 
Write (3,*) "The form of the spectrum for this data run& 

is a constant followed by an exponential decrease." 
Close (3) 

Case (5) 
Open (Unit = 3, File = 'C:\wnmath22\sChoice.dat') 
Write (3,*) "The form of the spectrum for this data run& 

is a constant followed by a linear decrease." 
Close (3) 

Case (6) 
Open (Unit = 3, File = 'C:\wnmath22\sChoice.dat') 
Write (3,*) "The form of the spectrum for this data run& 

is a Heaviside (constant then a factor of 100 decrease)." 
Close (3) 
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Case (7) 
Open (Unit = 3, File = 'C:\wnmath22\sChoice.dat') 
Write (3,*) "The form of the spectrum for this data run& 

is particle energy raised to a negative power." 
Close (3) 

End Select 
End If 

!!! TEMPERATURE INPUT FORMAXWELLIAN FLUX !!! 

! If the user selects a flux with a Maxwellian form, the section of code 
! below will ask the user to input a temperature which locates the peak 
! of the Maxwellian distribution function. The peak will be located at one 
! half the value of the input temperature. This information is written 
! to a data file for later use. 

If (sChoice .EQ. 1) Then 
Print*, " Enter temperature of Maxwellian Spectrum (MeV): " 
Print* 
Write(*,'(A)',Advance='NO*) "   Temperature = " 
Read(*,*) temperature 
Print* 

! The code below is constructed for writing data files 

If (WriteChoice EQ. 1) Then 
Open (Unit = 4, File = 'C:\wnmath22\temp.dat') 
Write (4,*) "The location of the peak (in MeV) of the Maxwellian& 

spectrum is", temperature/2 ,"." 
Close (4) 

End If 
End If 

!!! POWER INPUT FOR'ENERGY TO A POWER'FLUX !!! 

! If the user selects a flux of the form denoted by the sponsor at Phillips 
! Lab, the section of code below will ask the user to input a power for 
! which to raise the energy value passed to the function. Although the 
! power is negative, the user is prompted for a positive input. The sign 
! is changed in the code. This information is written to a data file 
! for later use. 

If (sChoice EQ. 7) Then 
Print*, " Enter the value for the power (positive number)" 
Print*, " which determines the rate of decrease for the flux. " 
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Print*," This can be a real number. The larger the number, " 
Print*," the greater the rate of decrease. " 
Print* 
WriteCVCA^Advance^O') "   Power =" 
Read(*,*) power 
Print* 

! The code below is constructed to write data to files 

If (WriteChoice EQ. 1) Then 
Open (Unit = 5, File = 'C:\wnmath22\power.dat') 
Write (5,*) "The power to which the energy is raised for& 

the form of the spectrum is", -power,"." 
Close (5) 

End If 
End If 

!!! FOLDING RESPONSE CHOICE !!! 

! The following section of code prompts the user to input the form of the 
! response function required for folding with the flux in order to produce 
! a set of instrument signals. There are six different options from which 
! to choose. Information is written to a data file for later use. 

Print*, " Enter your selection for the functional form" 
of the folding response function (must be an integer)." 

1 = Idealized Response for the 1st. Calibration " 
2 = Idealized Response (Heaviside) for the 2nd. Calibration 
3 = Refined Response for the 1st. Calibration " 
4 = Refined Response for the 2nd. Calibration" 
5 - First Calibration of the HEEF " 
6 = Second Calibration of the HEEF " 

Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Write(*,,(A),,Advance='NO') "   Choice = " 
Read(*,*) rFoldChoice 
Print* 

! The code below is designed to write data to files 

If (WriteChoice EQ. 1) Then 
Select Case (rFoldChoice) 
Case(l) 

Open (Unit = 6, File = 'C:\wnmath22\rFoldChc.dat') 
Write (6,*) "The choice for the folding response function is& 

an ideal response." 
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Close (6) 
Case (2) 

Open (Unit = 6, File = 'C:\wnmath22\rFoldChc.dat') 
Write (6,*) "The choice for the folding response function is& 

a Heaviside response." 
Close (6) 

Case (3) 
Open (Unit = 6, File = 'C:\wnmath22\rFoldChc. dat') 
Write (6,*) "The choice for the folding response function is& 

an equal tail size response." 
Close (6) 

Case (4) 
Open (Unit = 6, File = 'C:\wnmath22\rFoldChc.dat') 
Write (6,*) "The choice for the folding response function is& 

a large energy tail response." 
Close (6) 

Case (5) 
Open (Unit = 6, File = 'C:\wnmath22\rFoldChc.daf) 
Write (6,*) "The choice for the folding response function is& 

the first calibration of the HEEF." 
Close (6) 

Case (6) 
Open (Unit = 6, File = •C:\wnmath22\rFoldChc.dat') 
Write (6,*) "The choice for the folding response function is& 

the second calibration of the HEEF." 
Close (6) 

End Select 
End If 

!!! UNFOLDING RESPONSE CHOICE !!! 

! The following section of code prompts the user to input the form of the 
! response function required for unfolding the flux from the instrument 
! signals. There are six different options from which to choose. This 
! information is written to a file for later user. 

Print*, " Enter your selection for the functional form" 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 
Print* 

of the unfolding response function (must be an integer)." 
1 = Idealized Response for the 1st. Calibration " 
2 = Idealized Response (Heaviside) for the 2nd. Calibration " 
3 = Refined Response for the 1st. Calibration " 
4 = Refined Response for the 2nd. Calibration" 
5 = First Calibration of the HEEF " 
6 = Second Calibration of the HEEF " 
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WriteCVCA^Advance^O') "   Choice = " 
Read(*,*) rUnFoldChoice 
Print* 

! The code below is designed to write data to files 

If (WriteChoice EQ. 1) Then 
Select Case (rUnFoldChoice) 
Case(l) 

Open (Unit = 7, File = 'C:\wnmath22\rUnFldCh.dat') 
Write (7,*) "The choice for the unfolding response function is& 

an ideal response." 
Close (7) 

Case (2) 
Open (Unit = 7, File = 'C:\wnmath22\rUnFldCh. daf) 
Write (7,*) "The choice for the unfolding response function is& 

a Heaviside response." 
Close (7) 

Case (3) 
Open (Unit = 7, File = 'C:\wnmath22\rUnFldCh.dat') 
Write (7,*) "The choice for the unfolding response function is& 

an equal tail size response." 
Close (7) 

Case (4) 
Open (Unit = 7, File = 'C:\wnmath22\rUnFldCh.dat') 
Write (7,*) "The choice for the unfolding response function is& 

a large energy tail response." 
Close (7) 

Case (5) 
Open (Unit = 7, File = ,C:\wnmath22\rUnFldCh.dat') 
Write (7,*) "The choice for the unfolding response function is& 

the first calibration of the HEEF." 
Close (7) 

Case (6) 
Open (Unit = 7, File = 'C:\wnmath22\rUnFldCh.dat') 
Write (7,*) "The choice for the unfolding response function is& 

the second calibration of the HEEF." 
Close (7) 

End Select 
End If 

!!! Ebw ARRAY CHOICE !!! 

The following section of code prompts the user to select the desired form 
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! for the array which represents the energy values at the boundaries of all of 
! the wide bins (Ebw). Note that the choice for the unfolding response 
! function will drive this selection. The Ebw array must correspond to the 
! response function the user wishes to use for unfolding. This information 
! is written to a data file for later use. 

Print*," Enter your selection for the format of the array which" 
Print*, " represents the values for the energies at the wide bin" 
Print*, " boundaries (Ebw). Note that this selection must correspond" 
Print*, " to the unfolding response function (must be an integer)." 
Print*, "  1 = Equally Spaced Energy Boundaries (except for last bin)" 
Print*, " 2 = Wide Bin Boundaries corresponding to the first" 
Print*, "      calibration of the HEEF " 
Print*, " 3 = Wide Bin Boundaries corresponding to the second " 
Print*, "      calibration of the HEEF " 
Print* 
Write^^A^Advance^O')" Choice = " 
Read(*,*)EbwChoice 
Print* 

! The section of code below writes data to files. 

If (WriteChoice EQ. 1) Then 
Select Case (EbwChoice) 
Case (1) 

Open (Unit = 8, File = 'C:\wnmath22\Ebwchc.dat') 
Write (8,*) "The wide bin boundries correspond to equally spaced& 

energy values." 
Close (8) 

Case (2) 
Open (Unit = 8, File = 'C:\wnmath22\Ebwchc.dat') 
Write (8,*) "The wide bin boundries correspond to energy values& 

from the first instrument calibration." 
Close (8) 

Case (3) 
Open (Unit = 8, File = 'C :\wnmath22\Ebwchc. dat') 
Write (8,*) "The wide bin boundries correspond to energy values& 

from the second instrument calibration." 
Close (8) 

End Select 
End If 

!!! REFINEMENT FACTOR CHOICE !!! 

! The following section of code prompts the user to input an INTEGER for use 
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! as an refinement factor. This refinement factor will dictate the number of 
! narrow bins contained within a wide bin. Do not use a value less than 1 

Print*," Enter your selection for the refinement factor for the" 
Print*, " narrow bins. This refinement factor will dictate how many" 
Print*, " narrow bins are contained within a given wide bin. A factor" 
Print*, " selection of one equates to the standard option. Higher " 
Print*, " numbers will increase the number of narrow bins per wide bin. " 
Print*, " Do not select a factor less than one, and the selection must" 
Print*, " be an integer." 
Print* 
WriteCVCA^Advance^O')" Refinement Factor = " 
Read(*,*) RefmeFactor 
Print * 

!!! SIGNAL ERROR !!! 

! Here the user inputs the upper bound on the gaussian 
! distributed counting error which is added to the signal measurement. 
! This number should be entered as a percentage (0.5% should 
! be entered as 0.5). Be sure to note the format of the error calculation 
! in the section of code which calculates yDelta, because an input of 0.5 
! does not mean the signals will have an error of 0.5%. This is a scaling 
! factor involved in the error generation. 

Print*, " Enter the percentage (real) for the upper bound" 
Print*, " of the signal counting error (user may enter 0)" 
Print* 
Write(*,'(A)',Advance='NO') "   Error Percentage for Upper Limit = " 
Read(*,*) ErrorPercentSignal 
Print * 

!!! USER OR MACHINE OPTION FOR SIGNAL ERROR !!! 

The section of code below prompts the user to make a choice for the type 
of random counting error added to the exact signal. The user can either 
seed the random number generator himself, or he can let the machine do it 
by use of the system clock function. This information is written to a 
data file for later use. 

If (ErrorPercentSignal > 0) Then 
Print*, " Enter your choice for the generation of error" 
Print*, " for the signal measurements (must be an integer)." 
Print*," 1 for a user generated random error" 
Print*," 2 for a machine generated random error" 
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Print* 
Write(*,'(A),,Advance=,NO') "   Choice = " 
Read(*,*) SignalErrorChoice 
Print* 

! The code below writes data to files. 

If (WriteChoice EQ. 1) Then 
Open (Unit = 15, File = 'C:\wnmath22\SigErPnt.dat*) 
Write (15,*) "The error percentage for the signal measurements& 

is", ErrorPercentSignal, "." 
Close(15) 
Select Case (SignalErrorChoice) 

Case(l) 
Open (Unit = 9, File = 'C:\wnmath22\SigErTyp.dat') 
Write (9,*) "The errors in the signal measurements are& 

generated by the user." 
Close (9) 

Case (2) 
Open (Unit = 9, File = 'C:\wnmath22\SigErTyp.dat') 
Write (9,*) "The errors in the signal measurements are& 

generated by the machine." 
Close (9) 

End Select 
End If 

Else 
! The code below writes data to files. 

If (WriteChoice EQ. 1) Then 
Open (Unit = 9, File = 'C:\wnmath22\SigErTyp.dat') 
Write (9,*) "There are no errors in the signal measurements." 
Close (9) 

End If 

End If 

!!! SYSTEMATIC ERROR FOR THE RESPONSE !!! 

! Here the user inputs the upper bound on the uniformly or gaussian 
! distributed systematic error which is added to the response function. 
! This number should be entered as a percentage (20% should be 
! entered as 20). 

Print*, " Enter the percentage (real) for the upper bound of the" 
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Print*, " systematic response function error (user may enter 0)" 
Print* 
'Write(*;(A),,Advance=,NO') "   Error Percentage for Upper Limit = " 
Read(*,*) SysErrorPercentRespns 
Print* 

!!! USER OR MACHINE OPTION FOR SYSTEMATIC ERROR !! 

! The section of code below prompts the user to make a choice for the type 
! of random error added to the response function. The user can either seed 
! the random number generator himself, or he can let the machine do it by 
! use of the system clock function. 

If (SysErrorPercentRespns > 0) Then 
Print*, " Enter your choice for the generation of systematic" 
Print*, " error for the response function (must be an integer)." 
Print*, " 1 for a user generated random error" 
Print*, " 2 for a machine generated random error" 
Print* 

! The code below writes data to files 

Write(*,'(A),,Advance='NO') "   Choice = " 
Read(*,*) ResponseSysErrorChoice 
Print* 
If (WriteChoice EQ. 1) Then 

Open (Unit = 16, File = 'C:\wnmath22\SysErPtR.dat') 
Write (16,*) "The systematic error percentage for the calibration& 

is", SysErrorPercentRespns, "." 
Close(16) 

Select Case (ResponseSysErrorChoice) 
Case (1) 

Open (Unit =11, File = 'C:\wnmath22\ReSErTyp.dat') 
Write (11,*) "The systematic errors in the instrument^ 

calibration are generated by the user." 
Close (11) 

Case (2) 
Open (Unit =11, File = 'C:\wnmath22\ReSErTyp.dat') 
Write (11,*) "The systematic errors in the instrument& 

calibration are generated by the machine." 
Close (11) 

End Select 
End If 
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Else 
! The section of code below writes data to files 

If (WriteChoice EQ. 1) Then 
Open (Unit = 11, File = 'C:\wnmath22\ReSErTyp.dat') 
Write (11,*) "There are no systematic errors in the calibration." 
Close(11) 

End If 

End If 

!!! SYSTEMATIC ERROR FORMAT--GAUS SIAN OR UNIFORM 

In the following text block the user is asked to select between a 
gaussian or uniformly distributed systematic error. This allows the 
user to simulate different types of systematic error which may occur 
with a calibration. 

If (SysErrorPercentRespns > 0) Then 
Print*, " Enter your choice for the form of the" 
Print*, " systematic response error (must be an integer)." 
Print*, " 1 for an uniformly distributed error" 
Print*, " 2 for a gaussian distributed error" 
Print* 
Write(*,'(A)',Advance='NO') "   Choice = " 
Read(*,*) ResSysErrorFormat 
Print* 

! The code below writes data to files 

If (WriteChoice EQ. 1) Then 
Select Case (ResSysErrorFormat) 

Case (1) 
Open (Unit = 12, File = 'C:\wnmath22\ReSErFmt.daf) 
Write (12,*) "The systematic errors in the calibration& 

area uniformily distributed." 
Close (12) 

Case (2) 
Open (Unit = 12, File = 'C:\wnmath22\ReSErFmt.dat') 
Write (12,*) "The systematic errors in the calibration& 

are distributed in a gaussian manner." 
Close (12) 

End Select 
End If 
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End If 

!!! ENERGY DEPENDENT ERROR FOR THE RESPONSE !!! 

Here the user inputs the upper bound on an energy dependent uniformly or 
gaussian distributed error which is added to the response function. This 
number should be entered as a percentage (20% should be entered as 20). 

Print*, " Enter the percentage (real) for the upper bound of the" 
Print*, " energy dependent response function error (user may enter 0)" 
Print* 
Write(*,'(A)',Advance='NO') "   Error Percentage for Upper Limit = " 
Read(*,*) BinErrorPercentRespns 
Print* 

!!! USER OR MACHINE OPTION FOR ENERGY DEPDNT ERROR 

! The section of code below prompts the user to make a choice for the type 
! of energy dependent random error added to the response function. The user 
! can either seed the random number generator himself, or he can let the 
! machine do it by use of the system clock function. 

If (BinErrorPercentRespns > 0) Then 
Print*, " Enter your choice for the generation of energy dependent" 
Print*, " error for the response function (must be an integer)." 
Print*, " 1 for a user generated random error" 
Print*, " 2 for a machine generated random error" 
Print* 
Write^XAy^dvance^O') "   Choice-" 
Read(*,*) ResponseBinErrorChoice 
Print* 

! The code below writes data to files 

If (WriteChoice .EQ. 1) Then 
Open (Unit = 17, File = 'C:\wnmath22\BinErPtR.dat') 
Write (17,*) "The energy dependent error percentage for the& 

calibration is", BinErrorPercentRespns, "." 
Close(17) 

Select Case (ResponseBinErrorChoice) 
Case (1) 

Open (Unit = 13, File = 'C:Wnmath22\ReBErTyp.dat') 
Write (13,*) "The energy dependent errors in the instrument& 

calibration are generated by the user." 
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Close (13) 
Case (2) 

Open (Unit = 13, File = 'C:\wnmath22\ReBErTyp.dat') 
Write (13,*) "The energy dependent errors in the instrument& 

calibration are generated by the machine." 
Close (13) 

End Select 
• End If 

Else 
! The code below writes data to files 

If (WriteChoice EQ. 1) Then 
Open (Unit =13, File = •C:\wnmath22\ReBErTyp.dat') 
Write (13,*) "There are no energy dependent errors in the calibration." 
Close (13) 

End If 

End If 

!!! ENERGY DEPDNT ERROR FORMAT-GAUSSIAN OR UNIFORM 

In the following text block the user is asked to select between a 
gaussian or uniformly distributed energy dependent error. This 
allows the user to simulate different types of energy dependent 
error which may occur with a calibration. 

If (BinErrorPercentRespns > 0) Then 
Print*, " Enter your choice for the form of the energy" 
Print*, " dependent response error (must be an integer)." 
Print*, "  1 for an uniformly distributed error" 
Print*, " 2 for a gaussian distributed error" 
Print* 
WriteCXA^Advance^O') "   Choice = " 
Read(*,*) ResBinErrorFormat 
Print* 

! The code below writes data to files 

If (WriteChoice EQ. 1) Then 
Select Case (ResBinErrorFormat) 

Case(l) 
Open (Unit = 14, File = 'C:\wnmath22\ReBErFmt.dat') 
Write (14,*) "The energy dependent errors in the calibration& 

are uniformity distributed." 
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Close (14) 
Case (2) 

Open (Unit = 14, File = 'C:\wnmath22\ReBErFmt.dat') 
Write (14,*) "The energy dependent errors in the calibration& 

are distributed in a gaussian manner." 
Close (14) 

End Select 
End If 

End If 

!!! GATHER THE RANDOM SEEDS !!! 

! The code which follows will prompt the user for a random seed input in 
! the case where the user wishes to generate random error in the signal 
! measurements (as opposed to letting the machine generate random error 
! by calling the system clock). 

If (SignalErrorChoice==l) Then 
Print*, " Enter your integer input for the random seed" 
Print*, " (counting error in the signal)." 
Print* 
WriteCXA^Advance^O') "   Seed=" 
Read(*,*) Seedlnputl 
Print* 

! The code below writes data to files 

If (WriteChoice EQ. 1) Then 
Open (Unit = 18, File = 'C:\wnmath22\Seedl.dat') 
Write (18,*) "The signal counting error seed is", Seedlnputl ,"." 
Close(18) 

End If 

End If 

! The code which follows will prompt the user for a random seed input in 
! the case where the user wishes to generate random error in the 
! systematic response (as opposed to letting the machine generate random 
! error by calling the system clock). 

If (ResponseSysErrorChoice= 1) Then 
Print*, " Enter your integer input for the random seed" 
Print*, " (systematic error in the calibration)." 
Print* 
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WriteCVCA^Advance^O') "   Seed = " 
Read(*,*) Seedlnput2 
Print* 

! The code below writes data to files 

If (WriteChoice EQ. 1) Then 
Open (Unit = 19, File = 'C:\wnmath22\Seed2.dat*) 
Write (19,*) "The systematic response error seed is", Seedlnput2 ,"." 
Close(19) 

End If 

End If 

! The code which follows will prompt the user for a random seed input in 
! the case where the user wishes to generate random error in the energy 
! dependent response (as opposed to letting the machine generate random 
! error by calling the system clock). 

If (ResponseBinErrorChoice==l) Then 
Print*, " Enter your integer input for the random seed" 
Print*, " (energy dependent error in the calibration)." 
Print* 
Write(*,'(A),,Advance=,NO,) "   Seed = " 
Read(*,*) Seedlnput3 
Print* 

! The code below writes data to files 

If (WriteChoice EQ. 1) Then 
Open (Unit - 20, File = 'C:\wnmath22\Seed3.dat') 
Write (20,*) "The energy dependent response error seed is", Seedlnput3 ,"." 
Close(20) 

End If 

End If 

! The required inputs from the user have been gathered. The main body of 
! code follows. This is where the actual calculations for signal, flux, 
! and instrument response are generated. 

!!! MAIN BODY OF THE CODE 
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! Initial memory allocation and value assignments... 

Allocate(jMax(0:nw), nn(l:nw)) 

jMax(O) = 0 

! The section of code below assigns values to the array which represents 
! the number of narrow bins within a wide bin. By using the refinement 
! factor, the user can increase the number of narrow bins in each wide bin. 

nn = (/100, 100, 100, 100, 100, & 
100, 200, 200, 400, 400/) 

nn = nn * RefineFactor 

! The following do loop assigns values to the array jMax. This is the 
! number of the last narrow energy bin within a given wide bin. 

Do k=l,nw 
jMax(k) = jMax(k-l) + nn(k) 

End Do 

! j Total is the total number of narrow bins contained within all of the 
! wide bins. 

jTotal-jMax(nw) 

! The section of code below allocates memory storage space for the majority 
! of arrays used in this program. 

Allocate (RnFold(iMax,jTotal), nFlux(jTotal), wFlux(nw)) 
Allocate (Ebw(0:nw), Ebc(nw), dEnw(nw), dEw(nw), dEn(jTotal), En(jTotal)) 
Allocate (RnUnfold(iMax,jTotal), RwUnfoldExact(iMax,nw), RwUnfoldCalib(iMax,nw)) 
Allocate (RwUnfoldBinError(iMax,nw), RwUnfoldSysError(iMax,nw)) 

! Ebw is the array which contains the energy values (in MeVs) for the 
! boundary of each wide bin. The user has three options to choose from, 
! and the selection is driven by the choice of the unfolding response 
! function. Case 2 and Case 3 correspond to the instrument responses 

Select Case (EbwChoice) 
Case(l) 

Do k=0,nw-l 
Ebw(k)=1.0 + k 

End Do 
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Ebw(nw) = Ebw(nw-l)+2 
Case(2) 

Ebw = (/1.04, 1.56, 2.085, 2.581429, 3.042857, 3.557143, & 
4.057977, 5.024013, 6.090244, 8.066304, 10.0337/) 

Case(3) 
Ebw = (/1.15, 1.51, 1.85, 2.54, 3.025, 3.54, & 

4.205,5.15,6.66,8.55, 10.03/) 
End Select 

! The block of code below calculates the energy value (in MeV) at center 
! of each wide bin. 

Do k=l,nw 
Ebc(k) = (Ebw(k-l) + Ebw(k))/2 

End Do 

! dEw is the array which contains the energy width of the wide bins. It is 
! calculated by taking the difference between successive energy boundary 
! values. 

dEw(l :nw) = Ebw(l :nw) - Ebw(0:nw-1) 

! dEnw is the width of the narrow bins contained within a respective wide 
! bin. It is calculated by dividing the wide bin width by the number of 
! narrow bins within that wide bin. 

dEnw = dEw/nn 

The nested do loop below generates two arrays which are used in the 
generation of narrow bin response functions for both folding and 
unfolding. The first step (calculating dEn) ensures all the narrow 
energy bins within a wide bin have the same width. This is required 
for the two loops which follow this one. The second step (calculating 
En) generates an average energy value for the middle of each narrow bin. 
This quantity is used by the functions which calculate values for both 
the narrow bin response functions and the narrow bin fluxes. 

Do k=l,nw 
Do j=jMax(k-1 )+l jMax(k) 

dEn(j) = dEnw(k) 
En(j) = Ebw(k-l) + dEw(k)*(j-jMax(k-l)-0.5)/nn(k) 

End Do 
End Do 

!!! THE NARROW BIN FOLDING RESPONSE !!! 
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! The nested do loop which follows generates an array which contains 
! values for the narrow bin response function used for folding. Note 
! that use of a case statement allows the user to select which of six 
! narrow bin response functions he wishes to use for folding. 

Doi=l,iMax 
Doj=l,jTotal 

Select Case (rFoldChoice) 
Case (1) 

RnFold(ij) = ResponseA(i,En(j),Ebw)*dEn(j) 
Case (2) 

RnFold(ij) = ResponseB(i,En(j),Ebw)*dEn(j) 
Case (3) 

RnFold(ij) = ResponseC(i,En(j),Ebw)*dEn(j) 
Case (4) 

RnFold(ij) = ResponseD(i,En(j),Ebw)*dEn(j) 
Case (5) 

RnFold(ij) = HEEFresOne(ij,En(j),jTotal)*dEnG) 
Case (6) 

RnFold(ij) = HEEFresTwo(i,En(j))*dEn(j) 
End Select 

End Do 
End Do 

!!! THE NARROW BIN UNFOLDING RESPONSE !!! 

! The nested do loop which follows generates an array which contains 
! values for the narrow bin response function used for unfolding. Note 
! that use of a case statement allows the user to select which of six 
! narrow bin response functions he wishes to use for unfolding. 

Do i=l,iMax 
Doj=ljTotal 

Select Case (rUnfoldChoice) 
Case (1) 

RnUnfold(ij) = ResponseA(i,En(j),Ebw)*dEn(j) 
Case (2) 

RnUnfold(ij) = ResponseB(i,En(j),Ebw)*dEn(j) 
Case (3) 

RnUnfold(ij) = ResponseC(i,En(j),Ebw)*dEn(j) 
Case (4) 

RnUnfold(ij) = ResponseD(i,En(j),Ebw)*dEn(j) 
Case (5) 
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RnUnfold(ij) - HEEFresOne(ij,En(j)jTotal)*dEn(j) 
Case (6) 

RnUnfold(ij) = HEEFresTwo(i,En(j))*dEn(j) 
End Select 

End Do 
End Do 

!!! THE WIDE BIN UNFOLDING RESPONSE !!! 

The nested do loop which follows calculates a wide bin response function 
which is used for unfolding. This is a requirement for the code because 
only a square matrix can be inverted, and inversion of the response 
matrix is necessary for use of the Subroutine Jacobi. In essence, the 
narrow bin response function (an i x j array, non-square) is converted 
by use of the Sum intrinsic function to a wide bin response function 
(an i x k array, square). 

Doi=l,iMax 
Do k=l,nw 

RwUnfoldExact(i,k) = Sum(RnUnfold(i,jMax(k-l)+l:jMax(k))) 
End Do 

End Do 

!!! GENERATION OF THE SYSTEMATIC RESPONSE ERROR !!! 

! The following case statement generates a systematic error to be added to 
! the exact response function. The user can generate the random error, or 
! he can let the machine do it. If the user generates the error, he can 
! choose between an uniform distribution or a gaussian distribution. In 
! either case, this error generation is based on the random seed input by 
! the user. If the machine generates the error, the same two options are 
! available (uniform or gaussian). The only difference comes with the seed. 
! In this case, it is based on a call of the system clock. 

Allocate(RlA(iMax), R2A(iMax,12), GlA(iMax)) 

If (SysErrorPercentRespns > 0) Then 
Select Case(ResponseSysErrorChoice) 

Case(l) 
Select Case(ResSysErrorFormat) 

Case(l) 
Call Random_Seed(Put = Seedlnput2) 
Call Random_Number(RlA) 
Do i=l,iMax 

RwUnfoldSysError(i,:) = SysErrorPercentRespns*((2*RlA)-l)* & 
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RwUnfoldExact(i,:)/100 
End Do 

Case(2) 
Call Random_Seed(Put = Seedlnput2) 
Call Random_Number(R2A) 
GlA = Sum(R2A,2) - 6 
Do i=l,iMax 

RwUnfoldSysError(i,:) = SysErrorPercentRespns*GlA* & 
RwUnfoldExact(i,:)/100 

End Do 
End Select 

Case(2) 
Select Case(ResSysErrorFormat) 

Case(l) 
Call System_Clock(Count2) 
Seed2 = Count2 
Call Random_Seed(Put = Seed2) 
Call Random_Number(Rl A) 
Do i=l,iMax 

RwUnfoldSysError(i,:) = SysErrorPercentRespns*((2*RlA)-l)* & 
RwUnfoldExact(i,:)/100 

End Do 
Case(2) 

Call System_Clock(Count2) 
Seed2 = Count2 
Call Random_Seed(Put - Seed2) 
Call Random_Number(R2A) 
GlA=Sum(R2A2)-6 
Do i=l,iMax 

RwUnfoldSysError(i,:) = SysErrorPercentRespns*GlA* & 
RwUnfoldExact(i,:)/100 

End Do 
End Select 

End Select 
Else 

RwUnfoldSysError = 0 
End If 

Deallocate(RlA R2A, G1A) 

!!! GENERATION OF THE ENERGY DEPENDENT RESPONSE ERROR !!! 

! The following case statement generates an energy dependent error to be added 
! to the sum of the exact wide bin response function and the systematic error 
! for the wide bin unfolding response function. The user can generate the 
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! random error, or he can let the machine do it. If the user generates the 
! error, he can choose between an uniform distribution or a gaussian 
! distribution. In either case, this error generation is based on the random 
! seed input by the user. If the machine generates the error, the same two 
! options are available (uniform or gaussian). The only difference comes with 
! the seed. In this case, it is based on a machine call of the system clock. 

Allocate(R2(iMax,nw), G2(iMax,nw), R3(imax,nw,12)) 

If (BinErrorPercentRespns > 0) Then 
Select Case(ResponseBinErrorChoice) 

Case(l) 
Select Case(ResBinErrorFormat) 

Case(l) 
Call Random_Seed(Put = Seedlnput3) 
Call Random_Number(R2) 
RwUnfoldBinError = BinErrorPercentRespns*((2*R2)-l)*      & 
(RwUnfoldExact+RwUnfoldSysError)/100 

Case(2) 
Call Random_Seed(Put = Seedlnput3) 
Call Random_Number(R3) 
G2 = Sum(R3,3) - 6 
RwUnfoldBinError = BinErrorPercentRespns*G2*      & 
(RwUnfoldExact+RwUnfoldSysError)/100 

End Select 
Case(2) 

Select Case(ResBinErrorFormat) 
Case(l) 

Call System_Clock(Count3) 
Seed3 = Count3 
Call Random_Seed(Put = Seed3) 
Call Random_Number(R2) 
RwUnfoldBinError = BinErrorPercentRespns*((2*R2)-l)* & 
(RwUnfoldExact+RwUnfoldSysError)/100 

Case(2) 
Call System_Clock(Count3) 
Seed3 = Count3 
Call Random_Seed(Put = Seed3) 
Call Random_Number(R3) 
G2 = Sum(R3,3) - 6 
RwUnfoldBinError = BinErrorPercentRespns*G2* & 
(RwUnfoldExact+RwUnfoldSysError)/100 

End Select 
End Select 

Else 
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RwUnfoldBinError = 0 
End If 

Deallocate(R2, G2, R3) 

!!! THE WIDE BIN CALIBRATED UNFOLDING RESPONSE !!! 

! The nested do loop below calculates a simulated wide bin calibrated 
! response function. It is composed of an exact component and an error 
! component. The error component simulates mistakes made in the 
! calibration of the instrument. This calibrated response function is the 
! function used for unfolding. 

RwUnfoldCalib = RwUnfoldExact + RwUnfoldSysError + RwUnfoldBinError 

!!! THE NARROW BIN FOLDING FLUXES !!! 

! The looping structure coded below calculates the narrow bin known fluxes 
! which simulate the environment within which the instrument is placed. 
! The form of the flux is input by the user. These are the fluxes which 
! are folded with the narrow bin response functions which, in turn, 
! produce the exact signals. 

Doj=l,jTotal 
Select Case (sChoice) 

Case(l) 
nFlux(j) = Maxwellian(En(j), temperature) 

Case(2) 
nFlux(j) = ExponentialD(En(j)) 

Case(3) 
nFlux(j) = LinearD(En(j)) 

Case(4) 
nFlux(j) = ConExponD(En(j)) 

Case(5) 
nFlux(j) = ConLinD(En(j)) 

Case(6) 
nFlux(j) = Heaviside(En(j)) 

Case(7) 
nFlux(j) = ActualFlux(En(j), power) 

End Select 
End Do 

!!! THE WIDE BIN KNOWN FLUX !!! 

! The do loop below calculates a wide bin known flux. This CANNOT be 
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! used for folding. Its sole purpose is as a comparison with the wide 
! bin unfolded flux. The wide bin known flux is simply an average of the 
! narrow bin fluxes contained within that wide bin. 

Do k=l,nw 
wFlux(k) = Sum(nFlux(jMax(k-l)+l:jMax(k)))/nn(k) 

End Do 

!!.! THE EXACT INSTRUMENT SIGNALS !!! 

! The statement below calculates the ideal signal measured in each channel 
! of the instrument. It is important to note that this must be done as the 
! instrument does it, so the signals are calculated by narrow bin fluxes 
! and narrow bin response functions. In other words, the flux is folded 
! with the response function to generate the signals. 

Allocate(yExact(iMax), yDelta(iMax), yMeasured(iMax)) 
Allocate(Rl(iMax), R2(iMax,12), Gl(iMax)) 

yExact = MatMul(RnFold,nFlux) 

!!! GENERATION OF THE COUNTING ERROR FOR THE SIGNALS 

! The following case statement generates a counting error to be added to 
! the ideal instrument signal. The user can generate the random error, or 
! he can let the machine do it. If the user generates the counting error, 
The must input the seed. If the machine generates the error, the seed is 

! based on a call of the system clock. 

yMax = MaxVal(yExact) 

If (ErrorPercentSignal > 0) Then 
Select Case(SignalErrorChoice) 

Case(l) 
Call Random_Seed(Put = Seedlnputl) 
Call Random_Number(R2) 
Gl = Sum(R2,2) - 6 
yDelta = (ErrorPercentSignal/100)*Gl*((yMax/yExact)**0.5)*yExact 

Case(2) 
Call System_Clock(Countl) 
Seedl = Count 1 
Call Random_Seed(Put = Seedl) 
Call Random_Number(R2) 
Gl = Sum(R2,2) - 6 
yDelta = (ErrorPercentSignal/100)*Gl*((yMax/yExact)**0.5)*yExact 
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End Select 
Else 

yDelta = 0 
End If 

Deallocated, R2, Gl) 

!!! THE MEASURED SIGNALS !!! 

! The statement below calculates the signals actually measured by the 
! instrument. These measured signals have two components; the exact 
! signal resulting from the flux, and the error introduced by poor 
! detector performance. 

yMeasured = yExact + yDelta 

!!! SCREEN OUTPUT FOR SIGNALS AND RESPONSES !!! 

! The following print section of code ensures the user can judge the 
! performance of the code by tracking various signal and response elements 
! used in the calculation of the different fluxes. Basically, it shows as 
! output the difference between ideal and real measurements and responses. 

Print*, "      Channel Exact Signal Measured Signal    Ideal Rspns   Calib'd Rspns" 
Do i=l,iMax 

Print 20, i, yExact(i), yMeasured(i), RwUnfoldExact(U), RwUnfoldCalib(i,i) 
20 FormatC       ',13:'   '.Ftt^:'   ',F12.8:'      ',F13.8:'   ',F13.8) 

End Do 
Print* 

!!! CALL JACOBI, CALCULATE THE UNFOLDED FLUXES !!! 

! The section of code below is the core of the program. It is the call for 
! the subroutine Jacobi, the subprogram which solves for the unfolded flux 
! by using the Jacobi iterative technique. The wide bin calibrated 
! response function and the measured signals are passed to Jacobi. The 
! subroutine then returns the unfolded flux. 

Allocate(FluxUnfolded(nw)) 

If (nw==iMax) Then 
Call Jacobi(FluxUnfolded,RwUnfoldCalib,yMeasured) 

Else 
Print*, "Nonsquare matrix, not yet supported!" 
STOP 
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End If 

!!! CALCULATIONS FOR COMPARISONS !!! 

! The section below defines some basic quantities of interest. The key 
! point is the percent difference between the exact and the unfolded 
! fluxes. This is, in essence, the whole reason for writing this code. 
! NOTE, NOTE, NOTE : if negative fluxes are unfolded, the following 
! quantities will not be correct!! 

Allocate(DeltaWideFlux(iMax), FluxErrorPcnt(iMax)) 
Allocate(DeltaSig(iMax), DeltaRes(iMax,nw)) 

DeltaWideFlux = FluxUnfolded - wFlux 
FluxErrorPcnt = (DeltaWideFlux/wFlux)*100 
DeltaSig = yExact - yMeasured 
DeltaRes = RwUnfoldExact - RwUnfoldCalib 

!!! SCREEN OUTPUT FOR FLUXES AND DIFFERENCES !!! 

! The following print statement shows the critical components of the 
! output. The key values to note are the exact flux, the unfolded flux, 
! and the percent difference between the two. If this percent difference 
! is positive, it means the unfolded flux is larger than the exact flux. 
! The delta signal and the delta response values are given so that the 
! user can note the performance of the error generating functions. 

Print*, "    Wide Bin Exact Flux   Unfolded Flux Flux %Err  DSig     DRes" 

Do i=l,nw 
Print 10, i, wFlux(i), FluxUnfolded(i), FluxErrorPcnt(i), DeltaSig(i), & 
DeltaRes(U) 
10 FormatC       \B:'   ',F11.8:'   ',F11.8:'    ',F8.2:'     ',F8.6:& 
'   ',F8.6) 

End Do 

! The section of code below writes important output arrays to data 
! files. These files can be plotted in GeneralizedBarChart functions 
! found in Mathematica, v2.2. 

If (WriteChoice EQ. 1) Then 
Open (Unit = 1, File = 'C:\wnmath22\fluxunfd.dat') 
Write (1,*) FluxUnfolded 
Close (1) 
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Open (Unit = 25, File = 'C:\wnmath22\dEw.dat') 
Write (25,*) dEw 
Close(25) 

Open (Unit = 21, File = *C:\wnmath22\Ebw.dat') 
Write (21,*) Ebw 
Close (21) 

Open (Unit = 22, File = 'C:\wnmath22\Ebc.dat') 
Write (22,*) Ebc 
Close (22) 

Open (Unit - 2, File = 'C:\wnmath22\fluxknwn.dat') 
Write(2,*)wFlux 
Close (2) 

End If 

End Program InstrumentUnfold 

! The main program is finished. What follows is the section of code which 
! defines the ten functions and one subroutine used by the main program. 

! The following function calculates the energy value for each narrow bin if the 
! the electron distribution is Maxwellian in nature. 

Real(8) Function Maxwellian(e,tau) 

Implicit None 
Real(8) e ! energy of particles 
Real(8) tau ! fundamental temperature 

Maxwellian = 1.12837917*Sqrt(e/tau)*Exp(-e/tau)/tau 

End Function Maxwellian 

! The following function calculates the energy value for each narrow bin if the 
! the electron distribution experiences an exponential decrease with a maximum 
! number of electrons found at 1 MeV. 

Real(8) Function ExponentialD(e) 

Implicit None 
Real(8) e ! energy of the particle 
Real(8), Parameter:: Philnit =1.0 ! initial flux 
Real(8), Parameter:: elnit =1.0 ! scaling value 
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If(e<= 1.0) Then 
ExponentialD = Philnit 

Else 
ExponentialD = PhiInit*Exp(eInit/e)/2.71828182846 

End If 

End Function ExponentialD 

! The following function calculates the energy value for each narrow bin if the 
! the electron distribution experiences a linear decrease with a maximum 
! number of electrons found at 1 MeV. 

Real(8) Function LinearD(e) 

Implicit None 
Real(8) e ! energy of the particle 
Real(8), Parameter:: Philnit =1.0      ! initial flux 

If(e<= 1.0) Then 
LinearD = Philnit 

Else 
LinearD = Philnit*(l - (e-l)/10)    ! Hardwired parameters here 

End If 

End Function LinearD 

! The following function calculates the energy value for each narrow bin if the 
! the electron distribution experiences an exponential decrease after maintaining 
! a constant value from 1 to 3 Me Vs. The maximum number of electrons is the 
! constant value found from 1 to 3 Me Vs. 

Real(8) Function ConExponD(e) 

Implicit None 
Real(8) e ! energy of the particle 
Real(8), Parameter:: Philnit = 1 ! initial flux 
Real(8), Parameter:: emit = 3 ! scaling value 

If(e<= 3.0) Then 
ConExponD = Philnit 

Else 
ConExponD = PhiInit*Exp(eInit/e)/2.71828182846 

End If 
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End Function ConExponD 

! The following function calculates the energy value for each narrow bin if the 
! the electron distribution experiences a linear decrease after maintaining 
! a constant value from 1 to 3 Me Vs. The maximum number of electrons is the 
! constant value found from 1 to 3 Me Vs. 

Real(8) Function ConLinD(e) 

Implicit None 
Real(8) e ! energy of the particle 
Real(8), Parameter:: Philnit =1.0 ! initial flux 
Real(8), Parameter:: elnit = 3.0 ! scaling value 

If(e<= 3.0) Then 
ConLinD = Philnit 

Else 
ConLinD = Philnit*( 1 -(e-3)/8)      ! Hardwired parameters here 

End If 

End Function ConLinD 

! The following function calculates the energy value for each narrow bin if the 
! the electron distribution takes the form of a Heaviside function. The number 
! of electrons remain constant from 1 to 3 MeVs, and then experience a factor 
! of 100 decrease for the remainder of the interval of interest. 

Real(8) Function Heaviside(e) 

Implicit None 
Real(8) e ! energy of the particle 
Real(8), Parameter:: Philnit =1.0      ! initial flux 

If(e<= 3.0) Then 
Heaviside = Philnit 

Else 
Heaviside = Philnit/l 00 

End If 

End Function Heaviside 

! The following function calculates the energy value for each narrow bin based 
! on a flux form input by the sponsor at Phillips Lab. This rapidly decaying 
! form for the flux is based upon actual measurements made by the HEEF. 
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Real(8) Function ActualFlux(e,p) 

Implicit None 
Real(8) e ! energy of the particle 
Real(8) p ! value for the exponent 
Real(8), Parameter:: Philnit =1.0 ! initial flux 

If(e<= 1.0) Then 
ActualFlux = Philnit 

Else 
ActualFlux = Philnit*e**(-p) 

End If 

End Function ActualFlux 

! The following function defines an idealized response for each narrow bin of the 
! instrument. Although not physically realistic, it is extremely useful as a 
! tool for which to check the values of the calculated data. It can serve as 
! a crude approximation for the first calibration of the HEEF. 

Real(8) Function ResponseA(i,e,wbeb) 

Implicit None 
Integer i 
Real(8) e 
Real(8), Dimension(0:):: wbeb 
Real(8), Dimension(lO):: Rpeak 
Real(8) eMin, eMax 

Rpeak = (/0.00010397, 0.00046705, 0.00075258, 0.00090856, 0.00119878, & 
0.00134863, 0.00347621, 0.00427466, 0.00930346, 0.00984686/) 

eMin = wbeb(i - 1) 
eMax = wbeb(i) 
If(e<eMin) then 

Response A = 0.0 
Else if (e<=eMax) then 

ResponseA = Rpeak(i) 
Else 

ResponseA = 0.0 
End if 

End Function ResponseA 

! The following function defines a heaviside response for the instrument. 
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! This serves as a crude approximation for the second calibration 
! performed on the HEEF. 

Real(8) Function ResponseB(i,e,wbeb) 

Implicit None 
Integer i 

' Real(8)e 
Real(8), Dimension(0:):: wbeb 
Real(8), Dimension(lO) :: Rpeak 
Real(8) eMin 

Rpeak = (/0.00019227, 0.00030235, 0.00078752, 0.00108250, 0.00147380, & 
0.00224757, 0.00396249, 0.00695279, 0.00957538, 0.00818810/) 

eMin = wbeb(i-l) 
If (e<eMin) then 

ResponseB = 0 
Else 

ResponseB = Rpeak(i) 
End if 

End Function ResponseB 

! The following function defines a guassian form of the response for 
! the instrument. This serves as a more-refined approximation for the 
! first calibration performed on the HEEF. 

Real(8) Function ResponseC(i,e,wbeb) 

Implicit None 
Integer i 
Real(8) e 
Real(8), Dimension(0:):: wbeb 
Real(8), Dimension(lO) :: Rpeak 
Real(8) eMin, eMax, eAve 
Real(8),Parameter:: sigma = 0.1 

Rpeak = (/0.00010397, 0.00046705, 0.00075258, 0.00090856, 0.00119878, & 
0.00134863, 0.00347621, 0.00427466, 0.00930346, 0.00984686/) 

eMin = wbeb(i-l) 
eMax = wbeb(i) 
eAve = (eMin + eMax)/2 
If (e<eAve) Then 
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ResponseC = Exp(-(eAve-e)*(eAve-e)/(2*sigma*sigma))*Rpeak(i) 
Else 

ResponseC- Exp(-(e-eAve)* (e-e Ave)/(2 * sigma* sigma)) *Rpeak(i) 
End If 

End Function ResponseC 

! The following function provides a more-refined estimate of the 
! second calibrated instrument response. 

Real(8) Function ResponseD(i,e,wbeb) 

Implicit None 
Integer i 
Real(8) e 
Real(8), Dimension(0:) :: wbeb 
Real(8), Dimensional 0):: Rpeak 
Real(8) eMin, eMax, eAve 
Real(8),Parameter:: sigma = 0.1 

Rpeak = (/0.00019227, 0.00030235, 0.00078752, 0.00108250, 0.00147380, & 
0.00224757, 0.00396249, 0.00695279, 0.00957538, 0.00818810/) 

eMin = wbeb(i-l) 
eMax = wbeb(i) 
eAve = (eMin + eMax)/2 
If (e<eAve) then 

ResponseD = Exp(-(eAve-e)*(eAve-e)/(2*sigma*sigma))*Rpeak(i) 
Else 

ResponseD = Rpeak(i) 
End if 

End Function ResponseD 

! Below lies the code which calculates the response function for 
! the first calibration of the HEEF. 

Real(8) Function HEEFresOne(i,j,e,jTotalpass) 

Implicit None 

Integer i 
Integerj 
Integer jTotalpass 
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Real(8) e 
Real(8), Dimension(lO) 
Real(8), Dimension(lO) 
Real(8), Dimension(lO) 
Real(8), Dimension(lO) 
Real(8) GeoFactor 
Real(8) RelativeRes 

Ep 
Rmax 
Sigma 
DeltaE 

! This section of the code calculates the geometric factor. The 
! analytical functions used are slightly altered from those listed 
! in the calibration report. This change is detailed in chapter 
! three of the thesis. 

If (j<=j Totalpass) Then 
If(e<=1.75)Then 

GeoFactor = exp((-5.829*e + 21.452)*e - 14.985) 
Else if (e<=2.8) Then 

GeoFactor = exp((-0.378*e +2.553)*e+ 1.373) 
Else 

GeoFactor = 700*(l-1.69/(e+0.2))**1.2 
End If 
Else 

STOP "In the Function HEEFresOne the j index is not correct" 
End If 

! The arrays which follow are: 
! The energy values in each wide bin where the response 
!    is peaked 
! The peak response in each wide bin 
! The values for sigma (taken from the calibration report) 
! The values for delta E (taken from the calibration report) 

Ep = (/1.30, 1.82, 2.35, 2.80, 3.30, & 
3.80,4.55,5.55,7.08,9.05/) 

Rmax = (/0.919, 0.914, 0.925, 0.896, 0.886, & 
0.905, 0.997, 0.997, 1.000, 1.000/) 

Sigma = (/0.234, 0.234, 0.234, 0.221, 0.234, & 
0.221, 0.293, 0.340, 0.357, 0.425/) 

DeltaE - (/0.00, 0.00, 0.00, 0.00, 0.00, & 
0.00,0.15,0.15,0.58,0.50/) 

! This portion of the code calculates the relative response for 
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! the first calibration. There were obvious errors in the 
! technical report, so the analytical expressions used are 
! different from the ones given in the paper. 

If(i<=6)Then 
RelativeRes = Rmax(i)*exp(-(e-Ep(i))**2/(2*Sigma(i)**2)) 
Else if (i<= 10) Then 

If (e < Ep(i)-DeltaE(i)) Then 
RelativeRes = Rmax(i)*exp(-(e-Ep(i)+DeltaE(i))**2/ & 

(2*Sigma(i)**2)) 
Else if (e > Ep(i)+DeltaE(i)) Then 

RelativeRes = Rmax(i)*exp(-(e-Ep(i)-DeltaE(i))**2/ & 
(2*Sigma(i)**2)) 

Else 
RelativeRes = Rmax(i) 

End If 
Else 

RelativeRes = (0.1316*e**3) - (2.8149*e**2) + (14.991*e) + 0.659 
End If 

! This section of code calculates the absolute response as 
! determined by the first calibration of the HEEF. There is a 
! scaling factor in this relation which scales the values 
! calculated in the code with those shown in the plot in the 
! technical report. Why this difference in response calculations 
! exists is not known, but it may be a mistake in the report. 

HEEFresOne = (GeoFactor * RelativeRes)/(lE5) 

End Function HEEFresOne 

! Below lies the code which calculates the response function for 
! the second calibration of the HEEF. 

Real(8) Function HEEFresTwo(i,e) 

Implicit None 

Integer, Intent(IN):: i 
Real(8), Intent(IN):: e 
Real(8) x, fd 
Integer, Parameter :: Max = 10 

Real(8), Dimension(iMax):: Epeak 
Real(8), Dimension(iMax):: Rpeak 
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Real(8), Dimension(iMax) 
Real(8), Dimension(iMax) 
Real(8), Dimension(iMax) 

: Etail 
: Sigma 
: tailFrac 

! The values for the arrays which follow are taken from table 2 
! in chapter three of the thesis. No analytical expressions for 
! the absolute response derived from the partial re-calibration were 
! listed, so we made our own. Chapter three explains the rationale 
! used to construct these responses. 

Epeak = (/1.35, 1.70,2.25,2.80,3.30, & 
3.80,4.55,5.55,7.08,9.05/) 

Rpeak = (/6.0E-04, 1.0E-03, 1.3E-03, 2.5E-03, 3.2E-03, & 
3.7E-03, 4.6E-03, 5.1E-03, 5.6E-03, 6.0E-03/) 

Etail = (/2.02, 2.73, 3.38, 4.20, 4.95, & 
5.70, 6.83, 8.33, 10.62, 13.58/) 

Sigma = (/0.170, 0.161, 0.340, 0.221, 0.234, & 
0.221, 0.293, 0.340, 0.357, 0.425/) 

tailFrac = (/0.80, 0.52, 0.50, 0.50, 0.50, & 
0.50, 0.50, 0.50, 0.50, 0.50/) 

If (i<l  or. i>iMax) STOP "counting index for i is not correct!" 

If(e<Epeak(i))Then 
HEEFresTwo = Exp(<Epeak(i)-e)*(Epeak(i)-e)/(2*sigma(i)*sigma(i))) 

Else if(e < Etail(i)) Then 
x = (e - Epeak(i))/(Etail(i) - Epeak(i))    ! interpolate between Epk and Etail 
fd = 1 - tailFrac(i) ! fraction decrease from peak in tail 
HEEFresTwo = 1 + x * x * fd * (-3 + 2*x) 

Else 
HEEFresTwo = tailFrac(i) 

End If 

HEEFresTwo = HEEFresTwo * Rpeak(i) 

End Function HEEFresTwo 

! This subroutine solves the linear system Ax = b in an iterative 
! fashion by utilizing the Jacobi technique. 

Subroutine Jacobi(x,A,b) 
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Real(8), Intent(Out):: x( 
Real(8), Intent(In):: A(:, 
Real(8), Allocatable:: T( 

Integer i,n 

) 
), b(:) 
,:),c(:),Dinv(:,:),xold(:),r(:) 

! This constant is the relative error tolerance used to terminate 
! the iterations when the difference between successive flux vectors 
! is small. 

Real(8), Parameter:: tol=l.D-8 

n = size(b,l) 

! A final check to ensure all required parameters contain the 
! correct number of elements. 

If (Size(A,l)/=n .or. Size(A2)/=n or. Size(x,l)/=n) Then 
STOP "Incompatible argument dimensioning in Jacobi." 

End If 

Allocate(T(n,n), Dinv(n,n), c(n), xold(n), r(n)) 

! This section of the code assigns values to matrices used in the 
! Jacobi iterative scheme. See chapter two of the thesis. 

Dinv = 0 
T= A 

Do i=l,n 
If (A(i,i)==0) STOP "Zero diagonal element in Jacobi" 
Dinv(i,i) = 1/A(i,i) 
T(i,i) = 0 

End Do 

T = -MatMul(DinvJ) 
c = MatMul(Dinv,b) 

x = c ! Starting guess 

! This is the loop which actually computes the values of the 
! unfolded fluxes by using the Jacobi method. See chapter two 
! for a detailed explanation of this technique. 
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Do 
xold = x 
x = MatMul(T,x) + c 
r = MatMul(A,x)-b 
If (All(abs(r)<=tol*Abs(b))) Return 

End Do 
Deallocate^, xold, c, Dinv, T) 

End Subroutine Jacobi 
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Appendix B: A Case Study for Comparison 

This appendix contains a notebook shell for checking the Fortran 90 results in 

Mathematica, v2.2. This serves as an excellent way to compare exact and unfolded fluxes 

with the output generated by the code. This case study is for a flux modeled by 

<p{E) = E-4 (B-l) 

and a heaviside response function. There is no error added for the calibration or for the 

measurements, so the difference between the exact flux and the unfolded flux should be 

zero. 

The first step is selecting a flux format. 

f[ej = l/eA4     [hit insert] 

The second step is generating a set of instrument signals. The measurements are alculated 

by integrating the flux. Remember to account for the width of the wide bins. 

y = Join[Table[Integrate[f[e],{e,i,12}],{i,l,9}], 

{Integrate[f[e],{e,10,12}]}] [hit insert] 

N[y] [hit insert] 

This table lists the values for the response matrix and displays them in matrix form. The 

values were known from calculations done in the Fortran 90 code, so this table just 

reproduces them. 

r = Table[ 

Join[Table[0,{j,l,i-l}], 
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Table[l,{j,i,9}],{2}], 

{i,l,10}]; [hit insert] 

r // MatrixForm [hit insert] 

This step performs the calculation for the exaxt flux. 

phiExact = Join[Table[Integrate[f[e],{e,i,i+l}], 

{i,l,9}],{Integrate[f[e],{e,10,12}]/2}] [hit insert] 

phiExact // N [hit insert] 

The unfolded flux is calculated by linear solving r and y. 

phiUnfoId = LinearSolve[r,y] [hit insert] 

phiUnfoId // N [hit insert] 

This step calculates the difference between the two fluxes. Since no calibration or 

measurement error was added, the difference should be zero. This is a good tool for use 

in comparing results with the Fortran 90 code. 

phiUnfoId - phiExact [hit insert] 
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